Question:
A 63.0 kg sprinter starts a race with an acceleration of 4.20m/s square. What is the net external force on him? If the sprinter from the previous problem accelerates at that rate for 20m, and then maintains that velocity for the remainder for the 100-m dash, what will be his time for the race?
Answer:
Time for the race will be t = 9.26 s
Explanation:
Given data:
As the sprinter starts the race so initial velocity = v₁ = 0
Distance = s₁ = 20 m
Acceleration = a = 4.20 ms⁻²
Distance = s₂ = 100 m
We first need to find the final velocity (v₂) of sprinter at the end of the first 20 meters.
Using 3rd equation of motion
(v₂)² - (v₁)² = 2as₁ = 2(4.2)(20)
v₂ = 12.96 ms⁻¹
Time for 20 m distance = t₁ = (v₂ - v ₁)/a
t₁ = 12.96/4.2 = 3.09 s
He ran the rest of the race at this velocity (12.96 m/s). Since has had already covered 20 meters, he has to cover 80 meters more to complete the 100 meter dash. So the time required to cover the 80 meters will be
Time for 100 m distance = t₂ = s₂/v₂
t₂ = 80/12.96 = 6.17 s
Total time = T = t₁ + t₂ = 3.09 + 6.17 = 9.26 s
T = 9.26 s
One of the brightest nebulae in the night sky, the Orion Nebula may be seen with the unaided eye. The Trapezium is a young open cluster of four main stars in this magnitude 4 interstellar cloud of ionized atomic hydrogen.
<h3>What is the source of the Orion Nebula's crimson glow?</h3>
- The hydrogen gas in the Orion Nebula, which is powered by radiation from young stars, gives off a crimson tint. The nebula's blue-violet regions are reflecting radiation from bright, blue-white O-type stars while the red areas are emitting light.
- The Orion Nebula is one of many massive clouds of gas and dust in our Milky Way galaxy, say contemporary astronomers, and is one of the largest. It is approximately 1,300 light years away from Earth. This enormous hazy cocoon, which measures approximately 30 to 40 light-years in diameter, is generating potentially a thousand stars.
To learn more about Orion nebula refer to:
brainly.com/question/15575332
#SPJ4
In the writing of ionic chemical formulas the value of each ion's charge is crossed over in the crossover rule.
Rules for naming Ionic compounds
- Frist Rule
The cation (element with a negative charge) is written first in the name then the anion(element with a positive charge) is written second in the name.
- Second rule
When the formula unit contains two or more of the same polyatomic ion, that ion is written in parentheses with the subscript written outside the parentheses.
Example: Sodium carbonate is written as Na₂CO₃ not Na₂(CO)₃
- Third rule
If the cation is a metal ion with a fixed charge then the name of the cation will remain the same as the (neutral) element from which it is derived (Example: Na+ will be sodium).
If the cation is a metal ion with a variable charge, the charge on the cation is indicated using a Roman numeral, in parentheses, immediately following the name of the cation (example: Fe³⁺ = iron(III)).
- Fourth rule
If the anion is a monatomic ion, the anion is named by adding the suffix <em>-ide</em> to the root of the element name (example: F = Fluoride).
The oxidation state of each ion is also important, thus in the crossover rule, the value of each ion's charge is crossed over.
Learn more about chemical formulas here:
<u>brainly.com/question/11995171</u>
#SPJ4
Answer:
16.4287
Explanation:
The force and displacement are related by Hooke's law:
F = kΔx
The period of oscillation of a spring/mass system is:
T = 2π√(m/k)
First, find the value of k:
F = kΔx
78 N = k (98 m)
k = 0.796 N/m
Next, find the mass of the unknown weight.
F = kΔx
m (9.8 m/s²) = (0.796 N/m) (67 m)
m = 5.44 kg
Finally, find the period.
T = 2π√(m/k)
T = 2π√(5.44 kg / 0.796 N/m)
T = 16.4287 s