Explanation:
<em>Are</em><em> </em><em>the</em><em> </em><em>compounds</em><em> </em><em>formed</em><em> </em><em>by</em><em> </em><em>the</em><em> </em><em>ionic</em><em> </em><em>bonding</em><em> </em><em>or</em><em> </em><em>electronic</em><em> </em><em>bonding</em><em>.</em><em> </em><em>They</em><em> </em><em>are</em><em> </em><em>formed</em><em> </em><em>by</em><em> </em><em>transferring</em><em> </em><em>the</em><em> </em><em>electron</em><em> </em><em>form</em><em> </em><em>one</em><em> </em><em>element's</em><em> </em><em>valance</em><em> </em><em>shell</em><em> </em><em>to</em><em> </em><em>other</em><em> </em><em>element's</em><em> </em><em>shell</em><em>.</em>
<em><u>i</u></em><em><u> </u></em><em><u>hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
Approximately
(rounded down,) assuming that
.
The number of repetitions would increase if efficiency increases.
Explanation:
Ensure that all quantities involved are in standard units:
Energy from the cookie (should be in joules,
):
.
Height of the weight (should be in meters,
):
.
Energy required to lift the weight by
without acceleration:
.
At an efficiency of
, the actual amount of energy required to raise this weight to that height would be:
.
Divide
by
to find the number of times this weight could be lifted up within that energy budget:
.
Increasing the efficiency (the denominator) would reduce the amount of energy input required to achieve the same amount of useful work. Thus, the same energy budget would allow this weight to be lifted up for more times.
Answer:
the answer will be 3.763 seconds
Displacement in Space
It is the length of a body's real route. It is the shortest distance between the body's final and beginning positions.
It's a number with a scalar value. It's a quantity with a vector.
It can't possibly be negative. It might be a negative number, a zero number, or a positive number.