Answer:
q = 0.036 C
Explanation:
Given that,
Current passes through a defibrillator, I = 18 A
Time, t = 2 ms
We need to find the charge moved during this time. We know that,
Electric current = charge/time

Put all the values,

So, 0.036 C of charge moves during this time.
Answer:
4.5m/s
Explanation:
Linear speed (v) = 42.5m/s
Distance(x) = 16.5m
θ= 49.0 rad
radius (r) = 3.67 cm
= 0.0367m
The time taken to travel = t
Recall that speed = distance / time
Time = distance / speed
t = x/v
t = 16.5/42.5
t = 0.4 secs
tangential velocity is proportional to the radius and angular velocity ω
Vt = rω
Angular velocity (ω) = θ/t
ω = 49/0.4
ω = 122.5 rad/s
Vt = rω
Vt = 0.0367 * 122.5
Vt =4.5 m/s
Answer:Twice of given mass
Explanation:
Given
Two Particles of Equal mass placed at the base of an equilateral Triangle
let mass of two equal masses be m and third mass be m'
Taking one of the masses at origin
Therefore co-ordinates of first mass be (0,0)
Co-ordinates of other equal mass is (a,0)
if a is the length of triangle
co-ordinates of final mass 
Given its center of mass is at midway between base and third vertex therefore






Answer:

Explanation:
Let solve the differential equation by separating corresponding variables:

The solution of this equation is:

The explicit form of the temperature as a function of time is:


The value of the integration constant is:

The complete expression is:

A wave on a string is the classic example of a transverse wave. Each part of the string moves up and down while the wave moves from side to side. Transverse waves can not happen in gases because the perpendicular motion is not created by any force.
A Slinky is a great way to visualize longitudinal waves. Each part of the Slinky moves from side to side, just like the wave itself.
Sound waves are longitudinal pressure waves in the air. Water waves involve a combination of transverse and longitudinal waves. The water moves up and down, but also back and forth. Each particle in the water ends up moving in a circular fashion. Earthquakes also have different kinds of waves. The primary waves, called P waves, move with the highest velocity and are transverse waves. Secondary waves, called S waves, are longitudinal waves and occur seconds after the primary waves.