Answer:
53.13 °
Explanation:
In order to do this, we just need to apply the following:
tanα = Dy/Dx
Where:
Vy: speed of the ball in the y axis.
Vx: speed of the ball in the x axis.
At this point we do not need the speed of the first ball after the collision because in that moment is already heading in the direction that we are looking for. Therefore, we just need to use the innitial data to calculate the direction which the first ball will go.
According to this, then:
tanα = (40/30)
tanα = 1.3333
α = tan⁻¹(1.3333)
<h2>
α = 53.13°</h2>
This means that the final direction of the first ball is 53.13° and in the x axis because the starting momentum of this ball in the x axis has not dissapeared.
Hope this helps
Answer:
I don't exactly know what you learned but it could be because of more friction or the bus was running out of gas.
The banking angle of the curved part of the speedway is determined as 32⁰.
<h3>
Banking angle of the curved road</h3>
The banking angle of the curved part of the speedway is calculated as follows;
V(max) = √(rg tanθ)
where;
- r is radius of the path
- g is acceleration due to gravity
V² = rg tanθ
tanθ = V²/rg
tanθ = (34²)/(190 x 9.8)
tanθ = 0.62
θ = arc tan(0.62)
θ = 31.8
θ ≈ 32⁰
Learn more about banking angle here: brainly.com/question/8169892
#SPJ1
I would say that this is the first law of thermodynamics.
Answer:
Explanation:
Call the bike on the right A
Call the bike on the left B
The car begins it's time when it passes A
4 minutes later, it passes B.
But B has moved in 4 minutes and that is the key to the problem.
How far has B moved.
t = 4 minutes = 4/60 hours = 1/15 of an hour.
d = ?
rate = 30 km / hr
d = r * t
d = 30 km/hr * 1/15 hours = 2 km
The distance between the bikes is 5 km.
So the car has traveled 5 - 2 = 3 km
d = 3 km
r = ?
t = 4 minutes = 1/15 hour
r = d/t = 3/(1/15)= 3 / 0.066666666 = 45 km/hr.