The correct answer to your question and how to solve it is
The relation between wavelength (λ)and the frequency of electromagnetic oscillation (f) is described by the following expression: λ=c/f, where c–is the speed of light in vacuum = 3*10^8 m/s
Derive f from above: f = c/λ.How to Calculate: λ=890nm = 890*10^-9m = 8.9*10^-7m
f =3*10^8m/s Divided by 8.9*10^-7m = 0.34*10^15 s-1=3.4*10^14 s-1
So your Answer is: The frequency of radiation of wavelength 890 nm is 3.4*10^14s-1
Evaporate
Shape
I wish there were provided answer choices. Hope this helped
Answer:
1.05045 kg/m³
Explanation:
= Density of air = 1.26 kg/m³
= Density of hot air
= Mass of balloon = 539 kg
g = Acceleration due to gravity = 9.81 m/s²
v = Volume of air in balloon = 
The net force on the balloon will be

Also


The density of hot air inside the envelope is 1.05045 kg/m³
given that initial velocity is

deceleration is given as

now we have to find the distance covered in 16 s



so it will cover 137.6 m distance
part b)
in order to find the final speed



so its speed will be 6.2 m/s
Answer:
2683.3N
Explanation:
According to coulombs law which states that "the force of attraction existing between two charge q1 and q2 is directly proportional to the product of the charges and inversely proportional to the square of the distance (d) between them. Mathematically |F|= k|q1| |q2| /d² where;
F is the force of attraction between the charges
q1 and q2 are the charges
d is the distance between them
k is the coulombs constant
Given |q1|= 38.9 × 10^-6C and |q2| = 27.6399×10^-6C d = 6cm = 0.06m
k = 8.98755 × 109 Nm² /C²
Substituting the given data's in the equation we have;
|F| = 8.98755 × 10^9×38.9×10^-6×27.6399×10^-6/0.06²
|F| = 9.66/0.06²
|F| = 9.66/0.0036
|F| = 2683.3N
The magnitude of the force will be 2683.3N
Note that the modulus of the charges changes negative value of q2 to positive value. The opposite signs of the charges doesn't affect the final calculation, it only tells the force of attraction or repulsion between the charges. Since they are unlike charges, they will attract each other in the field.