Answer:
83%
Explanation:
On the surface, the weight is:
W = GMm / R²
where G is the gravitational constant, M is the mass of the Earth, m is the mass of the shuttle, and R is the radius of the Earth.
In orbit, the weight is:
w = GMm / (R+h)²
where h is the height of the shuttle above the surface of the Earth.
The ratio is:
w/W = R² / (R+h)²
w/W = (R / (R+h))²
Given that R = 6.4×10⁶ m and h = 6.3×10⁵ m:
w/W = (6.4×10⁶ / 7.03×10⁶)²
w/W = 0.83
The shuttle in orbit retains 83% of its weight on Earth.
8500 Hz and Longitudinal
Speed = frequency x wavelength
Speed of sound at 20 degrees Celsius is approximately 340 m/s
The answer is Decibels. <span />
Answer:
A. 16.67 m/s
Explanation:
Speed or velocity refers to the rate of change in distance over a change in time. That is;
Speed = Distance ÷ time
Where;
Speed is in metre/seconds
Distance is in metre
Time is in seconds.
In this question, Steve throws a football 50 meters in 3 seconds. The average speed can be calculated this:
S = D/t
Where; d = 50m, t = 3s
S = 50/3
S = 16.6666666
S = 16.67m/s
Answer:
Explanation:
Volume of lead object = volume of aluminium object = V
mass of lead object > mass of aluminium object
When both the objects immersed in water, the buoyant force acting on both the objects.
Buoyant force = Volume immersed x density of water x gravity
As the volume of both the objects is same, so the buoyant force acting on both the objects is same.
So, weight in air of lead object is more than the weight in air of aluminium object.