Answer:
<h2>
15m/s</h2>
Explanation:
The equation for a traveling wave as expressed as y(x, t) = A cos(kx −
t) where An is the amplitude f oscillation,
is the angular velocity and x is the horizontal displacement and y is the vertical displacement.
From the formula;
where;

Before we can get the transverse speed, we need to get the frequency and the wavelength.
frequency = 1/period
Given period = 2/15 s
Frequency = 
frequency = 1 * 15/2
frequency f = 15/2 Hertz
Given wavelength
= 2m
Transverse speed 

Hence, the transverse speed at that point is 15m/s
Answer:
The wavelength of wave is 7.5 meter.
Given:
Speed of wave = 1500 
Frequency of wave = 200 Hz
To find:
Wavelength of wave = ?
Formula used:

Where
= wavelength of the wave
v = speed of wave
n = frequency of wave
Solution:
Wavelength of wave is given by,

Where
= wavelength of the wave
v = speed of wave
n = frequency of wave

= 7.5 m
The wavelength of wave is 7.5 meter.
Answer:
V = 4.63 m/s
V = 11.31 m/s
Explanation:
Given,
The distance traveled by the bus, towards north, d = 2.5 km
= 2500 m
The time taken by the trip is, t = 9 min
= 540 s
The velocity of the bus,
V = d / t
= 2500 / 540
= 4.63 m/s
At another point, the bus travels at a constant speed of v = 18 m/s
Therefore the velocity becomes
V = (4.63 + 18)/2
= 11.31 m/s
Hence, the velocity of the bus, V = 11.31 m/s
Distance traveled by the ball is given by

here we know that
speed = 20 m/s
times = 0.25 s
now we have


so ball will travel 5 m distance in the given interval of time
Light at the red end of the visible portion has the least energy, lowest frequency, same speed, and longer wavelength compared to the violet end.
<h3><u>
Explanation:</u></h3>
The range in which the light exists is described as the electromagnetic spectrum. The light waves, radio waves, gamma rays,etc that exist in the world is not visible to human eyes. A kind of wave that modifies magnetic and electric fields is light. Spectroscopy makes use of all the frequencies and the wavelengths of the electromagnetic radiation.
The part of the electromagnetic spectrum that can be seen by the human eyes is the visible spectrum. The light waves with the wavelengths of 380 to 740 nm can be sen by the human eyes. Light at the red end of the visible portion has the least energy, lowest frequency, same speed, and longer wavelength compared to the violet end.