Coke.
The coke is produced by the carbonization of coal.
Answer:
thanks for your points
God bless you ALWAYS
and pa follow
at pa brainlest answer please
Cause potassium comes from strong base and acetate comes from weak acid, when they disociate potassium is stronger base or weaker conjugated acid than acetate is cause acetate is weaker acid or stronger conjugated base... i hope you can get it from this what i wrote
Answer:
177.8kJ/mol
Explanation:
In this reaction, the heat of decomposition is the same as the heat of formation. This is a decomposition reaction.
Given parameters:
ΔHf CaCO₃ = -1206.9kJ/mol
ΔHf CaO = −635.6 kJ/mol
ΔHf CO₂ = −393.5 kJ/mol
The heat of decomposition =
Sum of ΔHf of products - Sum of ΔHf of reactants
The equation of the reaction is shown below:
CaCO₃ → CaO + CO₂
The heat of decomposition = [ -635.6 + (-393.5)] - [−1206.9 ]
= -1029.1 + 1206.9
= 177.8kJ/mol
Answer:
86.2 g/mol
Explanation:
Before you can find the molar mass, you first need to calculate the number of moles of the gas. To find this value, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
After you convert the volume from mL to L and the temperature from Celsius to Kelvin, you can use the equation to find the moles.
P = 760 mmHg R = 62.36 L*mmHg/mol*K
V = 250 mL / 1,000 = 0.250 L T = 20 °C + 273.15 = 293.15 K
n = ? moles
PV = nRT
(760 mmHg)(0.250 L) = n(62.36 L*mmHg/mol*K)(293.15 K)
190 = n(18280.834)
0.0104 = n
The molar mass represents the mass (g) of the gas per every 1 mole. Since you have been given a mass and mole value, you can set up a proportion to determine the molar mass.
<----- Proportion
<----- Cross-multiply
<----- Divide both sides by 0.0104