First M stands for Molarity which is (moles of solute) / (Liters of solution). we also know that moles = (mass) / (molar mass). so we can form some equations here. We know:
Molarity (M) = moles (mol) / Liters (L)
moles (mol) = (mass) / (molar mass)
we can substitute the (mass) / (molar mass) for (moles) and get:
M = [(mass) / (molar mass)] / Liters
we can now isolate mass and get
M * Liters * molar mass = mass
now we need to find the molar mass of CaCl2 which is 110.98 g/mol
plug the values in and get
.350M * 6.5L * 110.98 g/mol = mass
mass = 252.4795g however the 6.5L has only 2 sig figs so i would say
mass CaCl2 = 2.5 * 10 ^2 g
The balanced equation is
4Fe+3O₂⇒2Fe₂O₃
We know that the mole of Fe₂O₃ is 6, and since the ratio between oxygen and <span>Fe₂O₃ is 3:2, we can see that
3:2 = x:6 (3 oxygen moles can make 2 </span>Fe₂O₃ moles = x oxygen moles can make 6 <span>Fe₂O₃ moles)
</span><span>
Multiply outside and inside (3*6 , 2*x) and put them on opposing sides of the equation
2*x = 3*6
2x=18
x=9
Therefore 9 moles of oxygen is needed.
</span>
No, but we can make it conduct energy by adding salt
<span>75g / 1.20 = 62.5 ml.
Hope this helps :))
</span>
Answer:
d. Two moles of carbon dioxide were produced from this reaction
Explanation:
The given chemical reaction can be written as follows;
2C₂H₂ + 5O₂ → 4CO₂ + 2H₂O
From the above chemical reaction, we have;
Two moles of C₂H₂ reacts with five moles of O₂ to produce four moles of CO₂ and two moles of H₂O
We have;
One mole of C₂H₂ will react with two and half moles of O₂ to produce <em>two moles of CO₂</em> and one mole of H₂O
Therefore, in the above reaction, when one mole of C₂H₂ is used, two moles of CO₂ will be produced.