Answer:
Speed, 
Explanation:
The device which is used to accelerate charged particles to higher energies is called a cyclotron. It is based on the principle that the particle when placed in a magnetic field will possess a magnetic force. Just because of this Lorentz force it moves in a circular path.
Let m, q and V are the mass, charge and potential difference at which the particle is accelerated.
The work done by the particles is equal to the kinetic energy stored in it such that,

v is the speed with which the particles enter the cyclotron
So,

So, the speed with which the particles enter the cyclotron is
. Hence, this is the required solution.
The newton is the SI unit for force; it is equal to the amount of net force required to accelerate a mass of one kilogram at a rate of one meter per second squared. Newton's second law of motion states: F = ma, multiplying m (kg) by a (m/s 2 ).
I don't understand your question, but I think that would help.
Answer:
The second answer, because when something saturated, it has the maximum possible number of hydrogen atoms.
Answer:
The empirical formula is CH2O, and the molecular formula is some multiple of this
Explanation:
In 100 g of the unknown, there are 40.0⋅g12.011⋅g⋅mol−1 C; 6.7⋅g1.00794⋅g⋅mol−1 H; and 53.5⋅g16.00⋅g⋅mol−1 O.
We divide thru to get, C:H:O = 3.33:6.65:3.34. When we divide each elemental ratio by the LOWEST number, we get an empirical formula of CH2O, i.e. near enough to WHOLE numbers. Now the molecular formula is always a multiple of the empirical formula; i.e. (EF)n=MF.So 60.0⋅g⋅mol−1=n×(12.011+2×1.00794+16.00)g⋅mol−1.Clearly n=2, and the molecular formula is 2×(CH2O) = CxHyOz.