Answer:
1. Inhibiting IP3 channels, leading to decreased Ca2 in the sarcoplasm and reduced contraction.
2. Increasing the relative activity of MLCP, leading to a decrease in tension.
3. Activating K channels, increasing K leaking out of the cell which hyperpolarizes it and decreases the likelihood of Ca2 entry.
Explanation
In smooth muscle, cyclic AMP (cAMP) mediates relaxation because cAMP inhibits a specific kinase required for myosin light chain protein (MLCP) phosphorylation, thereby triggering contraction in the smooth muscles. It has been shown that cAMP inhibits 1,4,5-trisphosphate (IP3)-dependent calcium ions (Ca 2+) release by activation of the cGMP-dependent protein kinase (PKG). PKG proteins act to modulate Ca2+ oscillations by stimulating sarcoplasmic Ca2+-ATPase membrane proteins, increasing Ca2+ in the sarcoplasmic reticulum stores and Ca2+ efflux from the cells, and activate voltage-gated potassium (K) channels, thereby leading to membrane hyperpolarization and reducing Ca2+ entry through Ca2+ channels.
No, but we share a common ancestor.
The correct option is (C) Carbon dioxide reacts with an amino group to stabilize the deoxyhemoglobin state.
In addition to transporting oxygen from the lungs to the tissues, hemoglobin is also involved in transporting carbon dioxide from the tissues to the lungs where, Carbon dioxide reacts with an amino group to stabilize the deoxyhemoglobin state.
<h3>How does hemoglobin contribute to the movement of carbon dioxide from the tissues to the lungs?</h3>
- The transport of carbon dioxide in the blood is influenced by a number of factors. First, blood contains more carbon dioxide soluble molecules than oxygen. The plasma contains 5–7% of the total dissolved carbon dioxide.
- Second, carbon dioxide can enter red blood cells and bind to hemoglobin or it can bind to plasma proteins. In this form, 10% of the carbon dioxide gets transported.
- A substance known as carbaminohemoglobin is created when carbon dioxide binds to hemoglobin. Hemoglobin and carbon dioxide can bind to one other again.
- As a result, when it gets to the lungs, the carbon dioxide can separate from the hemoglobin without restriction and leave the body.
- Third, the bicarbonate buffer system is responsible for transporting 85% of the carbon dioxide molecules.
Learn more about the CO₂ transfer with the help of the given link:
brainly.com/question/9131881
#SPJ4
I understand that the question you are looking for is "In addition to transporting oxygen from the lungs to the tissues, hemoglobin is also involved in transporting carbon dioxide from the tissues to the lungs. How is this accomplished?
A. Carbon dioxide competes for the oxygen-binding site on the heme.
B. Carbon dioxide competes for the 2,3-BPG-binding site.
C. Carbon dioxide reacts with an amino group to stabilize the deoxyhemoglobin state.
D. Carbon dioxide binds to the carboxyl terminus of hemoglobin."
Answer:
DNA is the information molecule. It stores instructions for making other large molecules, called proteins. These instructions are stored inside each of your cells, distributed among long structures called chromosomes. These chromosomes are made up of thousands of shorter segments of DNA, called genes.
Explanation: