Answer:
Tn = 2Tn-1 - Tn-2
Step-by-step explanation:
Before we can generate the recursive sequence, we need to find the nth term of the given sequence.
nth term of an AP is given as:
Tn = a+(n-1)d
If a17 = -40
T17 = a+(17-1)d = -40
a+16d = -40 ...(1)
If a28 = -73
T28 = a+(28-1)d = -73
a+27d = -73 ...(2)
Solving both equations simultaneously using elimination method.
Subtracting 1 from 2 we have:
27d - 16d = -73-(-40)
11d = -73+40
11d = -33
d = -3
Substituting d = -3 into 1
a+16(-3) = -40
a - 48 = -40
a = -40+48
a = 8
Given a = 8, d = -3, the nth term of the sequence will be
Tn = 8+(n-1) (-3)
Tn = 8+(-3n+3)
Tn = 8-3n+3
Tn = 11-3n
Given Tn = 11-3n and d = -3
Tn-1 = Tn - d... (3)
Tn-1 = 11-3n +3
Tn-1 = 14-3n
Tn-2 = Tn-2d...(4)
Tn-2 = 11-3n-2(-3)
Tn-2 = 11-3n+6
Tn-2 = 17-3n
From 3, d = Tn - Tn-1
From 4, d = (Tn - Tn-2)/2
Equating both common difference
(Tn - Tn-2)/2 = Tn - Tn-1
Tn - Tn-2 = 2(Tn - Tn-1)
Tn - Tn-2 = 2Tn-2Tn-1
2Tn-Tn = 2Tn-1 - Tn-2
Tn = 2Tn-1 - Tn-2
The recursive formula will be
Tn = 2Tn-1 - Tn-2
Answer:
x<(3b-5)/a
Step-by-step explanation:
Subtract 3b from both sides: -ax>5-3b
Divide by -a, when dividing/multiplying a negative you flip the </> sign: x<(3b-5)/a
Answer:
24
Step-by-step explanation:
Answer:
The distribution of the sample data will approach a normal distribution as the sample size increases.
Step-by-step explanation:
Central limit theorem states that the mean of all samples from the same population will be almost equal to the mean of the population, if the large sample size from a population, is given with a finite level of variance.
So, here Option C is not correct conclusion of central limit theorem -The distribution of the sample data will approach a normal distribution as the sample size increases.
We can say that the average of sample mean tends to be normal but not the sample data.
The answer to this question is 1686.