Answer:
<em>The body flies off to the left at 9.1 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
In a system of two masses, the equation simplifies to:
![m_1v_1+m_2v_2=m_1v'_1+m_2v'_2\qquad\qquad[1]](https://tex.z-dn.net/?f=m_1v_1%2Bm_2v_2%3Dm_1v%27_1%2Bm_2v%27_2%5Cqquad%5Cqquad%5B1%5D)
Wall-E robot is initially at rest, its two parts together. His head has a mass of m1=0.75 kg and his body has a mass of m2=6.2 kg. Both parts have initial speeds of zero v1=v2=0.
After the explosion, his head flies off to the right at v1'=75 m/s. We are required to find the speed of his body v2'. Solving [1] for v2':

Substituting values:


The body flies off to the left at 9.1 m/s
It is about density. The less dense object will tend to float when put into the water. For example, oil is denser than water so the result of the mixture would make oil float. Sinking objects would only mean that it has an equal or greater mass than water.
Energy = power × time
1800 = 300 × time
time = 1800 ÷ 300 = 6 s
Hope it helped!
Answer:
F = 5.33*10^-4N
Explanation:
to find the electrostatic force you use the Coulomb's law, given by the formula:

k: Coulomb's constant = 8.89*10^9 Nm^2/C^2
q_a: charge of A = 2.0*10^{-6}C
q_B: charge of B = -3.0*10^{-6}C
r: distance between the spheres = 10.0m
By replacing all these values you obtain:

hence, the forcebetween the spheres is about 5.33*10^-4N