Answer:
If child weight is equal to rope force then child will move with uniform speed
or we can say that the child will remain at rest in his position
Explanation:
As we know that child is hanging by rope
so here there will be two forces on the child
1) Weight or gravitational force which act vertically downwards
2) Tension in the rope which act vertically upwards
Now if child will accelerate upwards then tension force must be more than the weight of the child
If tension force is less than the weight then child will decelerate and his speed will decrease
if tension force is equal to child weight then in that case the child will remain at rest or it will move with same speed
The velocity of the canoe is 1.7 m/s.
<h3>What is momentum?</h3>
Momentum in physics is the products of mass and velocity. Now we have to find momentum with the formula; p = mv
a) Initial momentum = (15)8 m/s + 135 = 255 Kgms-1
b) Since momentum is conserved, the total momentum after throwing the anchor is still 255 Kgms-1
c) The final velocity of the boat is obtained from;
255 Kgms-1 = (15Kg + 135 Kg) v
v = 255 Kgms-1/(15Kg + 135 Kg)
v = 1.7 m/s
Learn more about momentum: brainly.com/question/904448
The best thing to do in this case is to redo the experiment and re record the info, it has to be precise and accurate so you also have to check if your procedure is correct. If the results are both accurate and precise then you have to report your findings to the committee of that specific field. <span />
Esta calculadora de calor específica es una herramienta que determina la capacidad de calor de una muestra calentada o refrigerada. El calor específico es la cantidad de energía térmica que necesita suministrar a una muestra que pesa 1 kg para aumentar su temperatura en 1 K. Siga leyendo para aprender a aplicar la fórmula de capacidad de calor correctamente para obtener un resultado válido.