Give more points, dont even feel like reading this for 5 pointsssss
Answer:
[NH₃] = 14.7 mol/L
Explanation:
28 wt% is a type of concentration that indicates that 28 g of ammonia is contained in 100 g of solution.
Let's determine the amount of ammonia:
28 g . 1 mol / 17.03g = 1.64 moles of NH₃
You need to consider that, when you have density's data it is always referred to solution:
Mass of solution is 100 g, let's find out the volume
0.90 g/mL = 100 g /V
V = 100 g / 0.90mL/g → 111.1 mL
We convert the volume to L → 111.1 mL . 1 L/1000mL = 0.1111 L
mol/L = 1.64 mol/0.1111L → 14.7 M
mol/L = M → molarity a sort of concentration that indicates the moles of solute in 1L of solution
Answer: The structure of an atom, theoretically consisting of a positively charged nucleus surrounded and neutralized by negatively charged electrons revolving in orbits at varying distances from the nucleus, the constitution of the nucleus and the arrangement of the electrons differing with various chemical elements.
:) I hope this helped! :)
Answer:
2.01V ( To three significant digits)
Explanation:
First we show the standard reduction potentials of Cu2+(aq)/Cu(s) system and Al3+(aq)/Al(s) system. We can clearly see from the balanced redox reaction equation that aluminium is the anode and was the oxidized specie while copper is the cathode and was the reduced specie. This observation is necessary when substituting values of concentration into the Nernst equation.
The next thing to do is to obtain the standard cell potential as shown in the image attached and subsequently substitute values of concentration and standard cell potential into the Nernst equation as shown. This gives the cell potential under the given conditions.
Explanation:
Dipole moment is defined as the measurement of the separation of two opposite electrical charges.
is a bent shaped molecule with a dipole moment of 1.87.
is also a bent shaped molecule with a dipole moment of 1.10.
is a also a bent shaped molecule and has a negligible dipole moment.
has a dipole moment of 0.29.
Therefore, given molecules are arranged according to their increasing dipole moment as follows.
<
<
< 