Answer:
The temperature should be higher than 437.9 Kelvin (or 164.75 °C) to be spontaneous
Explanation:
<u>Step 1:</u> Data given
ΔH∘=20.1 kJ/mol
ΔS is 45.9 J/K
<u>Step 2:</u> When is the reaction spontaneous
Consider temperature and pressure = constant.
The conditions for spontaneous reactions are:
ΔH <0
ΔS > 0
ΔG <0 The reaction is spontaneous at all temperatures
ΔH <0
ΔS <0
ΔG <0 The reaction is spontaneous at low temperatures ( ΔH - T*ΔS <0)
ΔH >0
ΔS >0
ΔG <0 The reaction is spontaneous at high temperatures ( ΔH - T*ΔS <0)
<u>Step 3:</u> Calculate the temperature
ΔG <0 = ΔH - T*ΔS
T*ΔS > ΔH
T > ΔH/ΔS
In this situation:
T > (20100 J)/(45.9 J/K)
T > 437.9 K
T > 164.75 °C
The temperature should be higher than 437.9 Kelvin (or 164.75 °C) to be spontaneous
The name is Potassium bromide.
Answer:
Sodium (Na) and Chlorine (CI)
Explanation:
Answer:
30 cm³
Explanation:
Step 1: Given data
- Density of aluminum (ρ): 2.7 g/cm³
- Mass of aluminum (m): 81 g
- Volume occupied by aluminum (V): ?
Step 2: Calculate the volume occupied by aluminum
The density of aluminum is equal to its mass divided by its volume.
ρ = m/V
V = m/ρ
V = 81 g / 2.7 g/cm³
V = 30 cm³
Drill cores from the ocean floor were dated and found to be very young compared to the age of the earth. This means the crust had to be formed recently, which can be explained by creation of crust at a spreading center.