The big bang theory is one of the multipl about the universe
The pressure in the flask is 3.4 atm.
<em>pV</em> = <em>nRT
</em>
<em>T</em> = (20 + 273.15) K = 293.15 K
<em>p</em> = (<em>nRT</em>)/<em>V</em> = (1.4 mol × 0.082 06 L·atm·K⁻¹mol⁻¹ × 293.15 K)/10 L = 3.4 atm
In order to find your answer you need to be <span>measuring entropy, so you will be using the following formula:
</span><span>delta S= S of (N2H4) + S of ( H2) - [2( S of NH3)]
</span>Hope this is very useful for you
I believe that the answer is False I'm not certain
Answer:
C₄H₈O₂.
Explanation:
- Firstly, we can calculate the no. of moles (n) of each component using the relation:
<em>n = mass/atomic mass,</em>
mol C = mass/(atomic mass) = (54.5 g)/(12.0 g/mol) = 4.54 mol.
mol H = mass/(atomic mass) = (9.3 g)/(1.0 g/mol) = 9.3 mol.
mol O = mass/(atomic mass) = (36.2 g)/(16.0 g/mol) = 2.26 mol.
- To get the empirical formula, we divide by the lowest no. of moles (2.26 mol) of O:
∴ C: H: O = (4.54 mol/2.26 mol) : (9.3 mol/2.26 mol) : (2.26 mol/2.26 mol) = 2: 4: 1.
<em>∴ Empirical formula mass of (C₂H₄O) = 2(atomic mass of C) + 4(atomic mass of H) + 1(atomic mass of O) =</em> 2(12.0 g/mol) + 4(1.0 g/mol) + (16.0 g/mol)<em> = 44.0 g/mol.</em>
∴ Number of times empirical mass goes into molecular mass = (88.0 g/mol)/(44.0 g/mol) = 2.0 times.
∴ The molecular formula is, 2(C₂H₄O), that is; <em>(C₄H₈O₂)</em>