Answer:
about 30g
Explanation:
Molarity = mol/L
*convert mL to L*
3M=xmol/.25
xmol = .75
*convert to g
.75 mol NaOH * 40g/mol = 30 g
Explanation:
an ion is an atom with a met electric charge due to the loss or gain of one or more electrons and an isotope can be in 2 forms of the same element that contain equal numbers of protons but a different numbers of neutrons in their nuclei and hence differ in relative atomic mass but not in chemical properties
I don’t know but sorryyyyyy
Answer: An orbit is a regular, repeating path that one object in space takes around another one. An object in an orbit is called a satellite. A satellite can be natural, like Earth or the moon. Many planets have moons that orbit them
HOPE THIS HELPS
The question provides the data in an incorrect way, but what the question is asking is for the entropy change when combining 3 moles of water at 0 °C (273.15 K) with 1 mole of water at 100 °C (373.15 K). We are told the molar heat capacity is 75.3 J/Kmol. We will be using the following formula to calculate the entropy change of each portion of water:
ΔS = nCln(T₂/T₁)
n = number of moles
C = molar heat capacity
T₂ = final temperature
T₁ = initial temperature
We can first find the equilibrium temperature of the mixture which will be the value of T₂ in each case:
[(3 moles)(273.15 K) + (1 mole)(373.15 K)]/(4 moles) = 298.15 K
Now we can find the change in entropy for the 3 moles of water heating up to 298.15 K and the 1 mole of water cooling down to 298.15 K:
ΔS = (3 moles)(75.3 J/Kmol)ln(298.15/273.15)
ΔS = 19.8 J/K
ΔS = (1 mole)(75.3 J/Kmol)ln(298.15/373.15)
ΔS = -16.9 J/K
Now we combine the entropy change of each portion of water to get the total entropy change for the system:
ΔS = 19.8 J/K + (-16.9 J/K)
ΔS = 2.9 J/K
The entropy change for combining the two temperatures of water is 2.9 J/K.