The less soluble salt : PbCl₂
<h3>Further explanation</h3>
Given
0.1 M NaCl
Required
The less soluble salt
Solution
If we see from the answer option, the salt that is more difficult to dissolve in NaCl is PbCl₂ because it has the same ion (Cl)
When PbCl₂ is dissolved in water, ionization will occur
PbCl₂ ⇒ Pb²⁺+ 2Cl⁻
So, when dissolved in NaCl, NaCl itself will be ionized
NaCl ⇒ Na⁺ + Cl⁻
Based on the principle of equilibrium, the addition of an ion (one of the ions is enlarged), the reaction will shift towards the ion that was not added. In addition to this Cl ion, the reaction will shift to the left so that the solubility of PbCl₂ will decrease (the reaction to the right decreases)
Explanation:
A single-replacement reaction replaces one element for another in a compound.
A double-replacement reaction exchanges the cations (or the anions) of two ionic compounds.
A precipitation reaction is a double-replacement reaction in which one product is a solid precipitate.
Solubility rules are used to predict whether some double-replacement reactions will occur.
1) Zn + 2 HCl = ZnCl2 + H2 ( <span>single replacement )
2) </span>2 NaCl + F2 = 2 NaF + Cl2 ( <span>single replacement )
3) </span>2 AlBr3 + 3 K2SO4 = 6 KBr + Al2(SO4)3 ( <span>double replacement )
4) </span>2 K + MgBr2 = 2 KBr + Mg ( <span>single replacement )
Answer 3
hope this helps!</span>
Hello!
The reaction that the graph represents is
A. Exothermic because Hrxn=-167 kJTo calculate Hrxn we apply the following equation:

Looking at the graph, and at the result of the calculations, we can see that the enthalpy of the products is
lower than the enthalpy of the reagents, because the sign is negative. That means that the reaction
releases energy in the form of heat and that the reaction is
exothermic.
Have a nice day!
The normal range of creatinine in human blood is between 0.50 mg/dL and 1.1 mg/dL. The patient's blood has a concentration of 0.0082 g/L. Let's convert that value into mg/dL.
We kwnot that there are 1000 mg in 1 g. And there are 10 dL in 1 L. We have to use those conversions.
1000 mg = 1 g 10 dL = 1 L
0.0082 g/L = 0.0082 g/L * 1000 mg/g = 8.2 mg/L * 1 L/ (10 dL) = 0.82 mg/dL
0.0082 g/L = 0.82 mg/dL
0.50 mg/dL < 0.82 mg/dL < 1.1 mg/dL
Answer: The concentration of creatinine = 0.82 mg/dL. It is in the normal range.