1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
satela [25.4K]
3 years ago
10

The components of an electronic system dissipating 180 W are located in a 1-m-long horizontal duct whose cross section is 16 cm

× 16 cm. The components in the duct are cooled by forced air, which enters at 27 oC at a rate of 0.65 m3 /min. Assuming 85 percent of the heat generated inside is transferred to air flowing through the duct and the remaining 15 percent is lost through the outer surfaces of the duct, determine (a) the exit temperature of air and (b) the highest component surface temperature in the duct. As a first approximation assume flow is fully developed in the channel. Evaluate properties of air at a bulk mean temperature of 35 oC. Is this a good assumption?
Engineering
1 answer:
oee [108]3 years ago
6 0

Answer:

a) The exit temperature is 39.25°C

b) The highest component surface is 132.22°C

c) The average temperature for air equal to 35°C is a good assumption because the air temperature at the inlet will increase due to the result in the heat gain produced by the duct and whose surface is exposed to a flow of hot.

Explanation:

a) The properties of the air at 35°C:

p = density = 1.145 kg/m³

v = 1.655x10⁻⁵m²/s

k = 0.02625 W/m°C

Pr = 0.7268

cp = 1007 J/kg°C

a) The mass flow rate of air is equal to:

m=\rho *V = 1.145*0.65=0.7443kg/min=0.0124kg/s

The exit temperature is:

T=T_{i} +\frac{Q}{m*c_{p} } =27+\frac{0.85*180}{0.0124*1007} =39.25°C

b) The mean fluid velocity is:

V_{m} =\frac{V}{A} =\frac{0.65}{0.16*0.16} =25.4m/min=0.4232m/s

The hydraulic diameter is:

D_{h} =\frac{4A}{p} =\frac{4*0.16*0.16}{4*0.16} =0.16m

The Reynold´s number is:

Re=\frac{VD_{h} }{v} =\frac{0.4232*0.16}{1.655x10^{-5} } =4091.36

Assuming fully developed turbulent flow, the Nusselt number is:

Nu=0.023Re^{0.8} *Pr^{0.4} =0.023*4091.36^{0.8} *0.7268^{0.4} =15.69

h=\frac{k*Nu}{D_{h} } =\frac{0.02625*15.69}{0.16} =2.57W/m^{2} C

The highest component surface temperature is:

T=T_{e} +\frac{\frac{Q}{A} }{h} =39.2+\frac{0.85*\frac{180}{4*0.16*1} }{2.57} =132.22°C

You might be interested in
HELP PLEASE!!!!
DaniilM [7]

Answer:

DESCULPA MAS EU NÃO ENTENDI

8 0
3 years ago
A mixing basin in a sewage filtration plant is stirred by a mechanical agitator with a power input/WF L T=. Other parameters de
MakcuM [25]

Answer: π= G[√(u.V/W)]

STEP 1

Given parameters:

Power Input W= FL/T,

Absolute Viscosity u= FT/L²

Basin volume V= V/L³

Velocity gradient G= V/L³

STEP 2

We start by expressing the velocity gradient G as a function of W, u, V

G= G(W,u,V)

To get the pii terms, we use the dimension number formula n=k - r

where n and k are natural numbers representing number of fundamental dimensions and variable present respectively.

n= 4-3=1

STEP 3:

We expressed the pii terms as

π= G.W^a.u^b.V^c

The three fundamental F L T

We can write as

Fⁿ.Lⁿ.Tⁿ= 1/T. (FL/T)^a.(FT/L²)^b.(L³)

Using the exponential rule and by comparing coefficient on both sides;

Fⁿ.Lⁿ.Tⁿ= F^a+b. L^a-2b+3c. T^-a+b-1

Fⁿ= F^a+b = a+b= 0..............I

Lⁿ= L^a-2b+3c=0 = a-2b+3c=0...........ii

Tⁿ=L^-a+b-1=0. -a+b-1=0............iii

From the above equations we have,

a+b =0: b=-a...........iv

putting eq. iv into iii , we have

-a-a-1=0: -2a-1=0: a= -1/2

substituting the above value of a into eq iv, we have

b= 1/2

substituting the value of b above into eq 2, we have,

-1/2-2(1/2)+3c=0

c=1/2.

Lastly, from the pii terms given above we can obtain dimensionless relationship,

π=G(W^-1/2.u^1/2.V^1/2)

We can write this as

π= G[ √1/W.√u. √1/2] = G[(√u.V/√W)] or G[√(u.V/W)].... final answer.

5 0
3 years ago
A medium-sized jet has a 3.8-mm-diameter fuselage and a loaded mass of 85,000 kg. The drag on an airplane is primarily due to th
SCORPION-xisa [38]

Answer:

F_{thrust} ≅ 111 KN

Explanation:

Given that;

A medium-sized jet has a 3.8-mm-diameter i.e diameter (d) = 3.8

mass = 85,000 kg

drag co-efficient (C) = 0.37

(velocity (v)= 230 m/s

density (ρ) = 1.0 kg/m³

To calculate the thrust; we need to determine the relation of the drag force; which is given as:

F_{drag} = \frac{1}{2} × CρAv²

where;

ρ = density of air wind.

C = drag co-efficient

A = Area of the jet

v = velocity of the jet

From the question, we can deduce that the jet is in motion with a constant speed; as such: the net force acting on the jet in the air = 0

SO, F_{drag}-F_{thrust} = 0

We can as well say:

F_{drag}= F_{thrust}

We can now replace F_{thrust} with F_{drag} in the above equation.

Therefore, F_{thrust} = \frac{1}{2} × CρAv²

The A which stands as the area of the jet is given by the formula:

A=\frac{\pi d^2}{4}

We can now have a new equation after substituting our A into the previous equation as:

F_{thrust} = \frac{1}{2} × Cρ (\frac{\pi d^2}{4})v^2

Substituting our data from above; we have:

F_{thrust} = \frac{1}{2} × (0.37)(1.0kg/m^3)(\frac{\pi(3.8m)^2 }{4})(230m/s)^2

F_{thrust} = \frac{1}{8}   (0.37)(1.0kg/m^3)({\pi(3.8m)^2 })(230m/s)^2

F_{thrust} = 110,990N

F_{thrust}  in N (newton) to KN (kilo-newton) will be:

F_{thrust} = (110,990N)*\frac{1KN}{1,000N}

F_{thrust} = 110.990 KN

F_{thrust} ≅ 111 KN

In conclusion, the jet engine needed to provide 111 KN thrust in order to cruise at 230 m/s at an altitude where the air density is 1.0 kg/m³.

5 0
3 years ago
What are the inputs, outputs and side effects of a PSP?
Kipish [7]

Answer:

Side effects - sudden loss of balance/ repeated falls

Outputs - sever sickness and could me factual

Inputs/corrections of this- medications and experimental treatments to help slow the process of deterioration

5 0
3 years ago
A gas stream flowing at 1000 cfm with a particulate loading of 400 gr/ft3 discharges from a certain industrial plant through an
Makovka662 [10]

<u>Solution and Explanation:</u>

Volume of gas stream = 1000 cfm (Cubic Feet per Minute)

Particulate loading = 400 gr/ft3 (Grain/cubic feet)

1 gr/ft3 = 0.00220462 lb/ft3

Total weight of particulate matter = 1000 \mathrm{cfm} \times 400 \mathrm{gr} / \mathrm{tt} 3 \times .000142857 \mathrm{lb} / \mathrm{ft} 3 \times 60=3428.568 \mathrm{lb} / \mathrm{hr}

Cyclone is to 80 % efficient

So particulate remaining = 0.20 \times 3428.568 \mathrm{lb} / \mathrm{hr}=685.7136

emissions from this stack be limited to = 10.0 lb/hr

Particles to be remaining after wet scrubber = 10.0 lb/hr

So particles to be removed = 685.7136- 10 = 675.7136

Efficiency = output multiply with 100/input = 98.542 %

4 0
3 years ago
Other questions:
  • Water at 15°C is to be discharged from a reservoir at a rate of 18 L/s using two horizontal cast iron pipes connected in series
    7·1 answer
  • Assuming the torsional yield strength of a compression spring is 0.43Sut and the maximum shear stress is equal to 434MPa. What i
    9·1 answer
  • A stream of air enters a 7.00-cm ID pipe at a velocity of 30.0 m/s at 27.0°C and 1.80 bar (gauge). At a point downstrream, the a
    15·1 answer
  • The amount of time an activity can be delayed and yet not delay the project is termed:_________
    14·1 answer
  • Do you understand entropy? Why the concept of entropy is difficult to engineering students?
    11·1 answer
  • What are the desired characteristics or values for the following parameters of an ideal amplifier?o Phase change as a function o
    10·1 answer
  • A(94,0,14) B(52,56,94) C(10,6,48) D(128,64,10)
    6·1 answer
  • What document should you have from the engine manufacturer when working on an engine
    8·1 answer
  • Estimate the maximum expected thermal conductivity for a Cermet that contains 58 vol% titanium carbide (TiC) particles in a coba
    8·1 answer
  • If we didn’t have the spark what could not happen?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!