1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notka56 [123]
3 years ago
7

The idling engines of a landing turbojet produce forward thrust when operating in a normal manner, but they can produce reverse

thrust if the jet is properly deflected. Suppose that while the aircraft rolls down the runway at 150 km/h the idling engine consumes air at 50 kg/s and produces an exhaust velocity of 150 m/s.
a. What is the forward thrust of this engine?
b. What are the magnitude and direction (i.e., forward or reverse) if the exhaust is deflected 90 degree without affecting the mass flow?
c. What are the magnitude and direction of the thrust (forward or reverse) after the plane has come to a stop, with 90 degree exhaust deflection and an airflow of 40 kg/s?
Engineering
1 answer:
sertanlavr [38]3 years ago
5 0

Answer:

T = 5416.67 N

T = -2083.5 N

T = 0

Explanation:

Forward thrust has positive values and reverse thrust has negative values.

part a

Flight speed u = ( 150 km / h ) / 3.6 = 41.67 km / s

The thrust force represents the horizontal or x-component of momentum equation:

T = flow(m_{exhaust})*(u_{exhaust} - u_{flight} )\\T = (50 kg/s ) * (150 - 41.67)\\\\T = 5416.67 N

Answer: The thrust force T = 5416.67 N

part b

Now the exhaust velocity is now vertical due to reverse thrust application, then it has a zero horizontal component, thus thrust equation is:

T = flow(m_{exhaust})*(u_{exhaust} - u_{flight} )\\T = (50 kg/s ) * (0 - 41.67)\\\\T = -2083.5 N

Answer: The thrust force T = -2083.5 N reverse direction

part c

Now the exhaust velocity and flight velocity is zero, then it has a zero horizontal component, thus thrust is also zero as there is no difference in two velocities in x direction.

Answer: T = 0 N

You might be interested in
Create a set of questions a company designing a new motorcycle for a younger audience might want to ask external customers to ma
Brut [27]

Answer:

Who would pay for my product or service?

Who has already bought from me?

Am I overestimating my reach?.

What does my network think?.

Am I making assumptions based on my personal knowledge and experience?

What's my revenue model

How will I sell my product or service?

How did my competitors get started?

How will I find my customers?

Is there room to expand my target market?

3 0
3 years ago
An aluminum oxide component must not fail when a tensile stress of 12.5 MPa is applied. Determine the maximum allowable surface
aivan3 [116]

Answer:

1.44 mm

Explanation:

Compute the maximum allowable surface crack length using

C=\frac {2E\gamma}{\pi \sigma_c^{2}} where E is the modulus  of elasticity, \gamma is surface energy and \sigma_c is tensile stress

Substituting the given values

C=\frac {2\times 393\times 10^{9}\times 0.9}{\pi\times (16\times 10^{6})^{2}= 0.001441103 m\approx 1.44mm

The maximum allowable surface crack is 1.44 mm

4 0
3 years ago
A plane surface 25 cm wide has its temperature maintained at 80°C. Atmospheric air at 25°C ows parallel to the surface
Gre4nikov [31]

Answer:

See the detailed answer in attached file.

Explanation :

Download docx
3 0
3 years ago
An ac waveform has an RMS voltage of 60 back. What is the waveforms peak voltage? A. 68.8 vac B. 84.4 vac 46.9 vac 60.0 vac
yawa3891 [41]

Answer:A

Explanation:I think it is

7 0
3 years ago
Calculate the magnitude of the velocity and the θ angular direction of the block and the bullet together when the 50 g bullet mo
almond37 [142]

Answer:

Magnitude of the velocity = 16.82 m/s

Angular direction, θ = 52.41°

Explanation:

As given ,

mass of bullet, m₁= 50g = 0.05 kg

speed of bullet , u₁ = 600 m/s

mass of the block , m₂ = 4 kg

speed of the block before collision , u₂ = 12 m/s

direction , θ = 30°

Now,

Assume that the combined velocity of bullet and block after collision = v

and the direction = θ

Now, from the conservation of momentum in x - direction :

m₁ u₁ + m₂ u₂ = ( m₁ + m₂ ) vₓ

where v = final velocity after collision

u₁ = initial velocity of bullet before collision = 0

m₁ = mass of the bullet before collision = 0.05 kg

u₂  = velocity of block before collision = 12 cos(30° )

m₂ = mass of block before collision

m₁ + m₂ = combined mass of bullet and block after collision = 0.05 + 4

∴ we get

0.05 (0) + 4(12 cos(30° ) ) = ( 0.05 + 4 ) vₓ

⇒ 0 + 4(6√3) = 4.05 vₓ

⇒24√3 = 4.05 vₓ

⇒vₓ = 10.26 m/s

Now, from the conservation of momentum in y - direction :

m₁ u₁ + m₂ u₂ = ( m₁ + m₂ ) v_{y}

where v = final velocity after collision

u₁= initial velocity of bullet before collision = 600

m₁ = mass of the bullet before collision = 0.05 kg

u₂  = velocity of block before collision = 12 sin(30° )

m₂= mass of block before collision

m₁+ m₂= combined mass of bullet and block after collision = 0.05 + 4

∴ we get

0.05 (600) + 4(12 sin(30° ) ) = ( 0.05 + 4 ) v_{y}

⇒ 30 + 4(6) = 4.05 v_{y}

⇒30 +24 = 4.05 v_{y}

⇒54 = 4.05 v_{y}

⇒v_{y} = 13.33 m/s

Now, the magnitude of the velocity = √vₓ² + v_{y}² = √(10.26)² + (13.33)²

                                                           = √105.26 + 177.68

                                                           = √282.95 = 16.82

The angular direction, θ =  tan^{-1}(\frac{v_{y} }{v_{x} }) =  tan^{-1}(\frac{13.33}{10.26}) = tan^{-1}(1.299) = 52.41°

8 0
3 years ago
Other questions:
  • Consider the following class definitions: class smart class superSmart: public smart { { public: public: void print() const; voi
    6·1 answer
  • A petrol engine produces 20 hp using 35 kW of heat transfer from burning fuel. What is its thermal efficiency, and how much powe
    14·1 answer
  • After a 65 newton weight has fallen freely from rest a vertical distance of 5.3 meters, the kinetic energy of the weight is
    12·1 answer
  • For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of t
    9·1 answer
  • An alloy is evaluated for potential creep deformation in a short-term laboratory experiment. The creep rate (ϵ˙) is found to be
    8·1 answer
  • How many astronauts work<br> in the International Space Station
    7·1 answer
  • Define;<br>i) Voltage<br>ii) Current<br>iii) Electrical Power<br>iv) Electrical Energy​
    10·1 answer
  • what do you expect the future trends of an operating system in terms of (a) cost (b) size (c) multitasking (d) portability (e) s
    12·1 answer
  • Economics is the study of how individuals and societies make choices under the condition of
    10·1 answer
  • If extension done in a stork position, during backward bending in a standing position of a special test for lumbar spine, produc
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!