1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dezoksy [38]
3 years ago
10

The gas expanding in the combustion space of a reciprocating engine has an initial pressure of 5 MPa and an initial temperature

of 1623°C. The initial volume is 0.05 m^3 and the gas expands through a volume ratio of 20 according to the law PV^1.25 = constant. Calculate: a) Work transfer b) Heat transfer
Engineering
1 answer:
Anit [1.1K]3 years ago
6 0

Answer:

a). Work transfer = 527.2 kJ

b). Heat Transfer = 197.7 kJ

Explanation:

Given:

P_{1} = 5 Mpa

T_{1} = 1623°C

                       = 1896 K

V_{1} = 0.05 m^{3}

Also given \frac{V_{2}}{V_{1}} = 20

Therefore, V_{2} = 1  m^{3}

R = 0.27 kJ / kg-K

C_{V} = 0.8 kJ / kg-K

Also given : P_{1}V_{1}^{1.25}=C

   Therefore, P_{1}V_{1}^{1.25} = P_{2}V_{2}^{1.25}

                     5\times 0.05^{1.25}=P_{2}\times 1^{1.25}

                     P_{2} = 0.1182 MPa

a). Work transfer, δW = \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

                                  \left [\frac{5\times 0.05-0.1182\times 1}{1.25-1}  \right ]\times 10^{6}

                              = 527200 J

                             = 527.200 kJ

b). From 1st law of thermodynamics,

Heat transfer, δQ = ΔU+δW

   = \frac{mR(T_{2}-T_{1})}{\gamma -1}+ \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

  =\left [ \frac{\gamma -n}{\gamma -1} \right ]\times \delta W

  =\left [ \frac{1.4 -1.25}{1.4 -1} \right ]\times 527.200

  = 197.7 kJ

You might be interested in
Two sites are being considered for wind power generation. On the first site, the wind blows steadily at 7 m/s for 3000 hours per
kirill [66]

Solution :

Given :

$V_1 = 7 \ m/s$

Operation time, $T_1$ = 3000 hours per year

$V_2 = 10 \ m/s$

Operation time, $T_2$ = 2000 hours per year

The density, ρ = $1.25 \ kg/m^3$

The wind blows steadily. So, the K.E. = $(0.5 \dot{m} V^2)$

                                                             $= \dot{m} \times 0.5 V^2$

The power generation is the time rate of the kinetic energy which can be calculated as follows:

Power = $\Delta \ \dot{K.E.} = \dot{m} \frac{V^2}{2}$

Regarding that $\dot m \propto V$. Then,

Power $ \propto V^3$ → Power = constant x $V^3$

Since, $\rho_a$ is constant for both the sites and the area is the same as same winf turbine is used.

For the first site,

Power, $P_1= \text{const.} \times V_1^3$

            $P_1 = \text{const.} \times 343 \ W$

For the second site,

Power, $P_2 = \text{const.} \times V_2^3 \ W$

           $P_2 = \text{const.} \times 1000 \ W$

5 0
2 years ago
Air modeled as an ideal gas enters a combustion chamber at 20 lbf/in.2
motikmotik

Answer:

The answer is "112.97 \ \frac{ft}{s}"

Explanation:

Air flowing into thep_1 = 20 \ \frac{lbf}{in^2}

Flow rate of the mass m  = 230.556 \frac{lbm}{s}

inlet temperature T_1 = 700^{\circ} F

PipelineA= 5 \times 4 \ ft

Its air is modelled as an ideal gas Apply the ideum gas rule to the air to calcule the basic volume v:

\to \bar{R} = 1545 \ ft \frac{lbf}{lbmol ^{\circ} R}\\\\ \to M= 28.97 \frac{lb}{\bmol}\\\\ \to pv=RT \\\\\to v= \frac{\frac{\bar{R}}{M}T}{p}

      = \frac{\frac{1545}{28.97}(70^{\circ}F+459.67)}{20} \times \frac{1}{144}\\\\=9.8 \frac{ft3}{lb}

V= \frac{mv}{A}

   = \frac{230.556 \frac{lbm}{s} \times 9.8 \frac{ft^3}{lb}}{5 \times 4 \ ft^2}\\\\= 112.97 \frac{ft}{s}

8 0
3 years ago
Example – a 100 kW, 60 Hz, 1175 rpm motor is coupled to a flywheel through a gearbox • the kinetic energy of the revolving compo
rjkz [21]

Answer:

1200KJ

Explanation:

The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.

P (rotor-loss) = 3 x K.E

P = 3 x 300 = 900 KJ

After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;

KE = 300 KJ

Since it is in opposite direction, it will also add up to rotor loss

P ( rotor loss ) = 900 + 300 = 1200 KJ

7 0
3 years ago
A fully braced structural member in a building is subjected to several different loads, including roof loads of D = 5 k and L_r
allochka39001 [22]

Answer: 37.4K

Explanation:

See attachment

7 0
3 years ago
All the fnaf UNC charecters
astra-53 [7]

Answer:

T.Freddy.

T.Bonnie.

T.Chica.

G.Freddy.

N. Freddy.

F.Foxy.

Mr.Hippo.

R.Freddy.

Explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • If a torque of M = 300 N⋅m is applied to the flywheel, determine the force that must be developed in the hydraulic cylinder CD t
    13·1 answer
  • An overhead 25m long, uninsulated industrial steam pipe of 100mm diameter is routed through a building whose walls and air are a
    9·1 answer
  • A fuel cell vehicle draws 50 kW of power at 70 mph and is 40% efficient at rated power. You are asked to size the fuel cell syst
    15·1 answer
  • What is the difference between tension and compression?
    9·1 answer
  • How do you build a house.
    15·1 answer
  • Draw the six principal views of
    13·1 answer
  • Solve the inequality below.Use the drop-down menus to describe the solution and its graph.
    12·1 answer
  • ABS system is necessary?
    6·1 answer
  • What energy does a curcuit board run on
    11·2 answers
  • Aqueous cleaners are ________ parts cleaning agents.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!