1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dezoksy [38]
2 years ago
10

The gas expanding in the combustion space of a reciprocating engine has an initial pressure of 5 MPa and an initial temperature

of 1623°C. The initial volume is 0.05 m^3 and the gas expands through a volume ratio of 20 according to the law PV^1.25 = constant. Calculate: a) Work transfer b) Heat transfer
Engineering
1 answer:
Anit [1.1K]2 years ago
6 0

Answer:

a). Work transfer = 527.2 kJ

b). Heat Transfer = 197.7 kJ

Explanation:

Given:

P_{1} = 5 Mpa

T_{1} = 1623°C

                       = 1896 K

V_{1} = 0.05 m^{3}

Also given \frac{V_{2}}{V_{1}} = 20

Therefore, V_{2} = 1  m^{3}

R = 0.27 kJ / kg-K

C_{V} = 0.8 kJ / kg-K

Also given : P_{1}V_{1}^{1.25}=C

   Therefore, P_{1}V_{1}^{1.25} = P_{2}V_{2}^{1.25}

                     5\times 0.05^{1.25}=P_{2}\times 1^{1.25}

                     P_{2} = 0.1182 MPa

a). Work transfer, δW = \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

                                  \left [\frac{5\times 0.05-0.1182\times 1}{1.25-1}  \right ]\times 10^{6}

                              = 527200 J

                             = 527.200 kJ

b). From 1st law of thermodynamics,

Heat transfer, δQ = ΔU+δW

   = \frac{mR(T_{2}-T_{1})}{\gamma -1}+ \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

  =\left [ \frac{\gamma -n}{\gamma -1} \right ]\times \delta W

  =\left [ \frac{1.4 -1.25}{1.4 -1} \right ]\times 527.200

  = 197.7 kJ

You might be interested in
Write a program to control the operation of the RED/GREEN/BLUE LED (LED2) as follows: 1. If no button is pressed, the LED should
aalyn [17]

Answer:

See explaination

Explanation:

int RED=10; int BLUE=11; int GREEN=12; int BUTTON1=8; int BUTTON2=9; void setup() { pinMode(RED, OUTPUT); pinMode(BLUE, OUTPUT); pinMode(GREEN, OUTPUT); pinMode(BUTTON1, INPUT); pinMode(BUTTON2, OUTPUT); } void loop() { int BTN1_STATE=digitalRead(BUTTON1); int BTN2_STATE=digitalRead(BUTTON2); if(BTN1_STATE==HIGH) { digitalWrite(BLUE, HIGH); delay(1000); // Wait for 1 second digitalWrite(BLUE, LOW); } if(BTN2_STATE==HIGH) { digitalWrite(RED, HIGH); delay(4000); // Wait for 4 seconds digitalWrite(RED, LOW); } if(BTN1_STATE==HIGH && BTN2_STATE==HIGH) { digitalWrite(GREEN, HIGH); delay(2000); // Wait for 2 second digitalWrite(GREEN, LOW); } }

4 0
2 years ago
An eddy current separator is to separate aluminum product from an input streamshredded MSW. The feed rate to the separator is 2,
blsea [12.9K]

Answer:

<em>the % recovery of aluminum product is 80.5%</em>

<em>the % purity of the aluminum product is 54.7%</em>

<em></em>

Explanation:

feed rate to separator = 2500 kg/hr

in one hour, there will be 2500 kg/hr x 1 hr = 2500 kg of material is fed into the  machine

of this 2500 kg, the feed is known to contain 174 kg of aluminium and 2326 kg of rejects.

After the separation, 256 kg  is collected in the product stream.

of this 256 kg, 140 kg is aluminium.

% recovery of aluminium will be = mass of aluminium in material collected in the product stream ÷ mass of aluminium contained in the feed material

% recovery of aluminium = 140kg/174kg x 100% = <em>80.5%</em>

% purity of the aluminium product = mass of aluminium in final product ÷ total mass of product collected in product stream

% purity of the aluminium product = 140kg/256kg

x 100% = <em>54.7%</em>

8 0
2 years ago
Calculate the differential pressure in kPa across the hatch of a submarine 320m below the surface of the sea. Assume the atmosph
kicyunya [14]

Answer:

The pressure difference across hatch of the submarine is 3217.68 kpa.

Explanation:

Gauge pressure is the pressure above the atmospheric pressure. If we consider gauge pressure for finding pressure differential then no need to consider atmospheric pressure as they will cancel out. According to hydrostatic law, pressure varies in the z direction only.  

Given:

Height of the hatch is 320 m

Surface gravity of the sea water is 1.025.

Density of water 1000 kg/m³.

Calculation:

Step1

Density of sea water is calculated as follows:

S.G=\frac{\rho_{sw}}{\rho_{w}}

Here, density of sea water is\rho_{sw}, surface gravity is S.G and density of water is \rho_{w}.

Substitute all the values in the above equation as follows:

S.G=\frac{\rho_{sw}}{\rho_{w}}

1.025=\frac{\rho_{sw}}{1000}

\rho_{sw}=1025 kg/m³.

Step2

Difference in pressure is calculated as follows:

\bigtriangleup p=rho_{sw}gh

\bigtriangleup p=1025\times9.81\times320

\bigtriangleup p=3217680 pa.

Or

\bigtriangleup p=(3217680pa)(\frac{1kpa}{100pa})

\bigtriangleup p=3217.68 kpa.

Thus, the pressure difference across hatch of the submarine is 3217.68 kpa.

6 0
2 years ago
Determine the dimensions for W if W = P L^3 / (M V^2) where P is a pressure, L is a length, M is a mass, and V is a velocity.
Eva8 [605]

Correct answer is option E. No dimensions

As we know formula Pressure (P) is \frac{F}{A}

also,

  • Dimensional formula of <em>Pressure is </em>M^{1}L^{-1}T^{-2}
  • Dimensional formula of <em>length is L </em>
  • Dimensional formula of <em>mass is M</em>
  • Dimensional formula  of <em>velocity is </em>L^{1} T^{-1}

So, as given W=\frac{P*L^{3} }{M*V^{2} }

Dimensional formula of W =\frac{M^{1}L^{-1}T^{-2}  L^{3}  }{M^{1} L^{2}T^{-2}   }

since all terms get cancelled

Work is dimensionless i.e no dimensions

Learn more about dimensions here brainly.com/question/20351712

#SPJ10

6 0
2 years ago
Please read and answer each question carefully.
Klio2033 [76]

the answer is (c)

After the vehicle is involved in a car accident or fire

5 0
3 years ago
Other questions:
  • Which conditions are required for nuclear fusion to begin
    8·1 answer
  • A piston–cylinder assembly contains air, initially at 2 bar, 300 K, and a volume of 2 m3. The air undergoes a process to a state
    12·1 answer
  • The typical Canadian worker is able to produce 100 board feet (a unit of measure) of lumber or 1000 light bulbs per year. The wo
    12·1 answer
  • PLS HURRYY!!!<br> Look at the image below
    10·1 answer
  • Three-dimensional measuring references all of these EXCEPT:
    10·1 answer
  • A driver is traveling at 90 km/h down a 3% grade on good, wet pavement. An accident
    11·1 answer
  • What do Engineering Systems achieve?
    8·1 answer
  • The ruler game, HELPPPP PLS
    11·2 answers
  • The example of using biotechnology in heart surgery is used to illustrate which of the
    12·1 answer
  • This acronym is a reminder of the most common types of hazards or injuries caused by electricity.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!