Answer:
Explanation:
Small-angle grain boundaries are not as effective in interfering with the slip process as are high-angle grain boundaries because there is not as much crystallographic misalignment in the grain boundary region for small-angle, and therefore not as much change in slip direction.
Low angle grain boundaries (quasi-coherent) are formed by the dislocation network positioned along the geometric plane with small tilt angle differences between successive peers that is tilt boundary made up edge dislocations therefore it may only divert the slip direction of the incoming gliding dislocation with very little frictional stresses. And on the other hand, a high angle grain boundary region because of their disordered almost liquid like structure which acts as a strong barrier against dislocation slip motion and causes actually formation of dislocations file-up against it by arresting their motion unless that the stress concentration at the leading dislocation becomes high enough to go though the barrier.
Answer:
1.0MG
Explanation:
to solve this problem we use this formula
S₀-S/t = ksx --- (1)
the values have been given as
concentration = S₀ = 250mg
effluent concentration = S= 10mg
value of K = 0.04L/day
x = 3000 mg
when we put these values into this equation,
250-10/t = 0.04x10x3000
240/t = 1200
we cross multiply from this stage
240 = 1200t
t = 240/1200
t = 0.2
remember the question says that 5MGD is required to be treated
so the volume would be
v = 0.2x5
= 1.0 MG
All of the dimensions on an aircraft drawing are _________ to the bottom of the drawing
Answer: parallel