Answer:
28.79%
Explanation:
Given
Design Speed, V = 120km/h = 33.33m/s
Radius, R = 300m
Side Friction, Fs = 0.09
Gravitational Constant = 9.8m/s²
Using the following formula, we'll solve the required rate of superelevation.
e + Fs = V²/gR where e = rate
e = V²/gR - Fs
e = (33.33)²/(9.8 * 300) - 0.09
e = 0.287853367346938
e = 28.79%
Hence, the required rate of superelevation for the curve is calculated as 28.79%
D.very small amounts of mass.
Answer:
The greater the velocity, the greater the Force needs to be, and the greater the fiction is
Explanation:
I don't know what you are working on so here are a few responses
Answer:
Explanation:
Ask a question that can be answered by making observations.
<span>The force of static friction F equals the coefficient of friction u times the normal force N the object exerts on the surface: F = uN. N is the centripetal force of the wall on the people; N = ma_N, where m is the mass of the people and a_N is the centripetal acceleration.
The people will not slip down if F is greater than the force of gravitation: F = uma_N > mg, or u > g/a_N.
a_N is the velocity v of the people squared divided by the radius of the room r: a_N = v^2/r.
The circumference of the room is 2 pi r = 28.3 m. So v = 28.3 * 0.8 m/sec = 22.6 m/sec.
So a_N = 114 m/sec^2.
g = 9.81 m/sec^2, so u must be at least 9.81/114 = 0.086.</span>