You can tell a lot about an object that's not moving,
and also a lot about the forces acting on it:
==> If the box is at rest on the table, then it is not accelerating.
==> Since it is not accelerating, I can say that the forces on it are balanced.
==> That means that the sum of all forces acting on the box is zero,
and the effect of all the forces acting on it is the same as if there were
no forces acting on it at all.
==> This in turn means that all of the horizontal forces are balanced,
AND all of the vertical forces are balanced.
Horizontal forces:
sliding friction, somebody pushing the box
All of the forces on this list must add up to zero. So ...
(sliding friction force) = (pushing force), in the opposite direction.
If nobody pushing the box, then sliding friction force = zero.
Vertical forces:
gravitational force (weight of the box, pulling it down)
normal force (table pushing the box up)
All of the forces on this list must add up to zero, so ...
(Gravitational force down) + (normal force up) = zero
(Gravitational force down) = -(normal force up) .
Answer:
stars share a gravitational force with the galaxy while nearby galaxies do not share a gravitational field.
Explanation:
stars will not collide because they are bound by a gravitational orbit around the galaxy
C) A crack in earth's crust where movement occurs. An example of this is the San Andreas Fault.
A) is repulsion
B) continental crust (lighter crust)
D) Hotspot
Answer:
Explanation:
Step one:
Given data
work-done in dragging the trash= 236J
applied force= 18.9N
distance moved= 24.4m
Required
The angle of the applied force
Step two:
We know that work done is
WD= F * distance
<em>The work is the product of the horizontal component of the force and the distance.
</em>
Horizontal force = 236 ÷ 24.4
= 9.67 N
Cos θ = Horizontal force ÷ Actual force
Cos θ = (236 ÷ 24.4) ÷ 18.9 = 236 ÷ 461.16
The angle is approximately 59˚