Answer:
B)
The magnitude of induced emf in the conducting loop is 0.99 mV.
Explanation:
Rate of increase in magnetic field per unit time = 0.090 T/s
Area of the conducting loop = 110 cm^2 = 0.0110 m^2
Electromagnetic induction is the production of an emf or voltage in a coil of wire due to a changing magnetic field through the coil.
Induced e.m.f is given as:
EMF = (-N*change in magnetic field/time)*Area
EMF = rate of change of magnetic field per unit time * Area
EMF = 0.090 * 0.0110
EMF = 0.00099 V
EMF = 0.99 mV
Answer:
<em>The K.E from A to B won't increase...</em>
Explanation:
That's because the P.E from A to B is increasing. The K.E will increase if charge moves from a higher potential to a lower potential i.e., from B to A.
That is the reason there is no effect on net K.E when moving from a potential to same potential over and over (A to C).
Answer:
your mom and mark me brainlyist if I was right
The stopwatch will be the most useful in determining the kinetic energy of a 50 g battery- powered car traveling a distance of 10 m.
<h3>What is kinetic energy?</h3>
Kinetic energy is the energy of a body possessed due to motion.
This means that for an object to possess kinetic energy, it must be in motion.
The kinetic energy is measured in Joules, which is a product of the mass of the substance and the time taken to travel a distance.
A stopwatch is an instrument used to measure time as one of the components of kinetic energy.
Therefore, the stopwatch will be the most useful in determining the kinetic energy of a 50 g battery- powered car traveling a distance of 10 m.
Learn more about kinetic energy at: brainly.com/question/12669551
Answer:
A ball moving through the air.
Explanation:
The ball has momentum which is a form of kinetic energy.
I don't know if that is correct, but I hope it helps!!!!