Answer:
The value 
Explanation:
From the question we are told that
The volume blood ejected is 
The velocity of the blood ejected is 
The density of blood is 
The heart beat is 
The average force exerted by the blood on the wall of the aorta is mathematically represented as

=> 
=> 
for this we apply, Heisenberg's uncertainty principle.
it states that physical variables like position and momentum, can never simultaneously know both variables at the same moment.
the formula is,
Δp * Δx = h/4π
m(e).Δv * Δx = h/4π
by rearranging,
Δx = h / 4π * m(e).Δv
Δx = (6.63*10^-34) / 4 * 3.142 * 9.11*10^-31 * 5.10*10^-2
Δx = 6.63*10^-34 / 583.9 X 10 ⁻³¹
Δx = 0.011 X 10⁻³
for the bullet
Δx = (6.63*10^-34) / 4 * 3.142 * 0.032*10^-31 * 5.10*10^-2
Δx = 6.63*10^-34 /2.05
Δx =3.23 X 10⁻³² m
therefore, we can say that the lower limits are 0.011 X 10⁻³ m for the electron and 3.23 X 10⁻³² m for the bullet
To know more about bullet problem,
brainly.com/question/21150302
#SPJ4
The power applied to move the box anywhere is
(20 n) x (distance moved) / (time to move the distance) .
Answer:
A. It is colder at the top of a mountain
Explanation:
Answer:
C. Quadruple
Explanation:
¨Drivers who are talking on the phone, even on a hands-free device, are up to four times more likely to be involved in a crash.¨
I hope this helps! Have a great day!