Answer:
0.5 m/s north
Explanation:
Take east to be +x, west to be -x, north to be +y, and south to be -y.
His displacement in the x direction is:
x = 20 m − 20 m = 0 m
His displacement in the y direction is:
y = 10 m
His total displacement is therefore 10 m north.
His velocity is equal to displacement divided by time.
v = 10 m north / 20 s
v = 0.5 m/s north
Answer:
Your question was incomplete so here is the complete question and answer.
Q. When exercising in the heat, which of the following hydration strategies is best for temperature regulation during an event (e.g., 10K race)
a) plain water
b) 5-7 percent glucose solution
c) Glucose polymer solution of 6-8 percent
d) There appears to be no difference among these different forms of hydration techniques relative to temperature regulation.
Ans. d) There appears to be no difference among these different forms of hydration techniques relative to temperature regulation.
Explanation:
Temperature Regulation is an important phenomenon for the person exposed to extreme hot conditions or weather. Exercising in hot conditions increase the body temperature. Greater and intense exercise, greater the production of heat. Then the heat dissipation takes place in the form of excessive sweating which results in dehydration. That was just the brief overview of temperature regulation. Above mentioned techniques are equally good hydration techniques so there is no difference at all. You can have a plain water or glucose solutions of above mentioned percentages.
1449 is the answer to the question
Answer:
0.033 A
Explanation:
Current: This can be defined as the rate of flow of electric charge in a circuit.
The S.I unit of current is Ampere (A)
From Ohm's law.
V = IR ............................ Equation 1
Where V = Potential difference, I = current, R = resistance.
Making I the subject of the equation,
I = V/R................... Equation 2
Given: V = 52.3 V, R = 1570 Ω
Substitute into equation 2
I = 52.3/1570
I = 0.033 A.
Hence the current in the resistor = 0.033 A