Answer:
b.
Explanation:
In case of Single Slit, diffraction will occur.
Then In Single slit Diffraction, width of central fringe is

where D= distance b/w screen and slit
a= slit width
\lambda = wavelength
Thus if Screen width increases keeping other factors same then width of central fringe becomes narrower as

On increasing the slit width the central bright fringe width The width of the central bright fringe becomes narrower.
To solve the exercise it is necessary to take into account the concepts of wavelength as a function of speed.
From the definition we know that the wavelength is described under the equation,

Where,
c = Speed of light (vacuum)
f = frequency
Our values are,


Replacing we have,



<em>Therefore the wavelength of this wave is
</em>
Answer:
The force exerted by the earth on a body is called gravitational of a body.
i think this is the answer
In order to compute the final velocity of the trains, we may apply the principle of conservation of momentum which is:
initial momentum = final momentum
m₁v₁ = m₂v₂
The final mass of the trains will be:
10,000 + 10,000 = 20,000 kg
Substituting the values into the equation:
10,000 * 3 = 20,000 * v
v = 1.5 m/s
The final velocity of the trains will be 1.5 m/s
The first thing you should know for this case is that work is defined as the product of force by the distance traveled in the direction of force.
We have then:
W = Fd
The distance varies, so we must integrate:
from 0 to 20:
W = ∫F (x) dx
W = ∫32xdx
W = 32∫xdx
W = 32 (x ^ 2/2) = (16) (20 ^ 2) = 6400 ft * lbs
answer:
6400 ft * lbs is work done pulling the rope up 20 ft