1) At the moment of being at the top, the piston will not only tend to push the penny up but will also descend at a faster rate at which the penny can reach in 'free fall', in that short distance. Therefore, at the highest point, the penny will lose contact with the piston. Therefore the correct answer is C.
2) To solve this problem we will apply the equations related to the simple harmonic movement, hence we have that the acceleration can be defined as

Where,
a = Acceleration
A = Amplitude
= Angular velocity
From a reference system in which the downward acceleration is negative due to the force of gravity we will have to



From the definition of frequency and angular velocity we have to




Therefore the maximum frequency for which the penny just barely remains in place for the full cycle is 2.5Hz
Answer:
A.
Explanation:
Earth is composed of different layers and one layer moves over another due to differences in the densities.
According to the physics of density, a substance having less density floats over a higher density substance. The oceanic crust has more density than the continental crust that is why continental crust float over oceanic crust.
So in the given example, plate B is moving below the plate A, it means plate B is more dense than plate A because plate B is composed of oceanic crust
. <u>For example : continents float over the asthenosphere (a layer below the lithosphere).</u>
Hence, the correct answer is "A
".
Answer:
111,000 Pa
Explanation:
P = Patm + ρgh
122,000 Pa = Patm + (921 kg/m³) (9.8 m/s²) (1.22 m)
Patm = 111,000 Pa