a. The disk starts at rest, so its angular displacement at time
is

It rotates 44.5 rad in this time, so we have

b. Since acceleration is constant, the average angular velocity is

where
is the angular velocity achieved after 6.00 s. The velocity of the disk at time
is

so we have

making the average velocity

Another way to find the average velocity is to compute it directly via

c. We already found this using the first method in part (b),

d. We already know

so this is just a matter of plugging in
. We get

Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that

Then for
we would get the same
.
Answer:
b) se duplica
Explanation:
The disk is moving with constant angular velocity, let's call it
.
The linear velocity of a point on the disk is given by

where r is the distance of the point from the axis of rotation.
In this problem, the object is moved at a distance twice as far as the initial point, so

Therefore, the new linear velocity is

So, the velocity has doubled, and the correct answer is
b) se duplica
Answer:
The mass of the object, its acceleration due to gravity and the distance between the top of the hill and the ground level.
Explanation:
gravitational potential energy is the energy possessed by a body under influence of gravitational force by virtue of its position.
In order to determine the gravitational potential energy of the brick, we must know the mass (m) of the brick, its acceleration due to gravity (g) since it is acting under the influence of gravitational force and the distance between the top of the hill and the ground level. (The height).
Potential energy of a body is calculated as mass × acceleration due to gravity × height.
Answer: Tangential Velocity
The tangential velocity
is defined as the angular velocity
by the radius
of circular motion. As shown below:
Its name is due to the fact that this linear velocity vector is always tangent to the trajectory and is the distance traveled by a body or object in a circular movement in a period of time.
F is force, m is mass and a<span> is acceleration. The math behind this is quite simple. If you double the force, you double the acceleration, but if you double the mass, you cut the acceleration in half.</span>