1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
3 years ago
12

The Sun is expected to undergo hydrogen fusion for a total of _____ years. a million 10 million a billion 10 billion 100 billion

Physics
2 answers:
Elanso [62]3 years ago
3 0
The correct answer is 10 billion years. The Sun is expected to undergo hydrogen fusion for a total of 10 billion years. The Sun generates its energy by nuclear fusion of hydrogen and produces helium nucleus. It fuses 620 million metric tons every second.
liraira [26]3 years ago
3 0
A total of 10 billion years 
 
You might be interested in
Elements that easily transmit electricity and heat display the property known as conductivity.
Musya8 [376]


True.

Conductivity is the ability to transmit heat, electricity or sound. Conductivity is a physical property.

A physical property is one which can be measured  or observed without changing the composition or identity of a the substance.

Conductivity is a physical property because the composition of the substance does not change.

A copper wire is still  a copper wire when it is conducting electricity. Like wise, an aluminum rod is still an aluminum rod when heated. It is conducting heat but the heat does not change it, it is still  an aluminum rod during the whole process.

7 0
2 years ago
Read 2 more answers
I would love to stretch a wire from our house to the Shop so I can 'call' my husband in for meals. The wire could be tightened t
dezoksy [38]
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".

Solution:
The fundamental frequency in a standing wave is given by
f= \frac{1}{2L} \sqrt{ \frac{T}{m/L} }
where L is the length of the string, T the tension and m its mass. If  we plug the data of the problem into the equation, we find
f= \frac{1}{2 \cdot 24 m} \sqrt{ \frac{240 N}{0.05 kg/m} }=1.44 Hz

The wavelength of the standing wave is instead twice the length of the string:
\lambda=2 L= 2 \cdot 24 m=48 m

So the speed of the wave is
v=\lambda f = (48 m)(1.44 Hz)=69.1 m/s

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
t= \frac{L}{v}= \frac{24 m}{69.1 m/s}=0.35 s
7 0
3 years ago
The half-life of the radioactive element beryllium-13 is 5 × 10-10 seconds, and half-life of the radioactive element beryllium-1
telo118 [61]
<h2>Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>

Explanation:

The half-life h of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.

In this case, we are given the half life of two elements:

beryllium-13: h_{B-13}=5(10)^{-10}s=0.0000000005s

beryllium-15: h_{B-15}=2(10)^{-7}s=0.0000002s

As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?

We can find it out by the following expression:

h_{B-15}=X.h_{B-13}

Where X is the amount we want to find:

X=\frac{h_{B-15}}{h_{B-13}}

X=\frac{2(10)^{-7}s}{5(10)^{-10}s}

Finally:

X=400

Therefore:

The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.

8 0
2 years ago
An electron is accelrated by a unifor electric field (1000v/m) pointing vertically upward. Use energy methods to get the magnitu
ExtremeBDS [4]

Explanation:

In the given situation two forces are working. These are:

1) Electric force (acting in the downward direction) = qE

2) weight (acting in the downward direction) = mg

Therefore, work done by all the forces = change in kinetic energy

Hence, qE \times S + mg \times S = 0.5 \times mv^{2}

     1.6 \times 10^{-19} \times 1000 + 9.1 \times 10^{-31} \times 9.8 \times (\frac{0.10}{100}) = 0.5 \times 9.1 \times 10^{-31} \times v^{2}

It is known that the weight of electron is far less compared to electric force. Therefore, we can neglect the weight  and the above equation will be as follows.

   (1.6 \times 10^{-19} \times 1000) \times (\frac{0.10}{100}) = 0.5 \times 9.1 \times 10^{-31} \times v^{2&#10;}

         v = sqrt{\frac{1.6 \times 10^{-19}}{(0.5 \times 9.1 \times 10^{-31})}

           = 592999 m/s

Since, the electron is travelling downwards it means that it looses the potential energy.

8 0
2 years ago
What happens to the kinetic energy of a body when: a) the mass of the body is doubled at constant velocity? b) the velocity of t
blagie [28]
Using the formula KE=1/2mv^2

a: The kinetic energy doubles.
b: The kinetic energy quadruples.
c: The kinetic energy is cut in half.
Hopefully it’s clear how the formula can show you this.
3 0
3 years ago
Other questions:
  • a charge of 30. coulombs passes through a 24-ohm resistor in 6.0 seconds. what is the current through the resistor? (1) 1.3 a (3
    5·2 answers
  • Car has a mass of 710 kg. it starts from rest and tevels 40.0 m in 3.0 s. the car is uniformly accelarting. what is the net forc
    6·1 answer
  • a 2.0 kg block slides on the horizontal, frictionless surface until it counters a spring force constant with
    5·1 answer
  • you and a friend sit still on a spinning merry-go-round. The merry-go-round spins 5 times every second, and to a stationary obse
    12·2 answers
  • A flight attendant pushes a beverage car on an aircraft. Her mass is 75 kg and the cart’s mass is 27 kg. Calculate the accelerat
    11·1 answer
  • To make and sell fireplaces, Hearth, Inc., buys igniters, tubing, and other parts from Inflame Parts and installs them without m
    15·1 answer
  • At what phase or phases could water exist at 4.579mm pressure and 0.0098°C?
    10·1 answer
  • A Shaolin monk of mass 60 kg is able to do a ‘finger stand’: he supports his whole weight on his two index fingers, giving him a
    11·1 answer
  • A car starts from rest and accelerates uniformly over a time of 7.25 seconds for a distance of 210 m. Determine the acceleration
    5·1 answer
  • Which of the following statements is TRUE about updating the exposure control plan?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!