Answer:
Final Velocity = 4.9 m/s
Explanation:
We are given;. Initial velocity; u = 2 m/s
Constant Acceleration; a = 0.1 m/s²
Distance; s = 100 m
To find the final velocity(v), we will use one of Newton's equations of motion;
v² = u² + 2as
Plugging in the relevant values to give;
v² = 2² + 2(0.1 × 100)
v² = 4 + 20
v² = 24
v = √24
v = 4.9 m/s
Answer:
A) 

B) 
C) 

Explanation:
For this case we want to create a function like this:

Where Z represent the degrees for the Z scale C the Celsius grades and tha valus a and b parameters for the model.
The boiling point of nitrogen is -195,8 °C
The melting point of iron is 1538 °C
We know the following equivalences:
-195.8 °C = 0 °Z
1538 °C = 1000 °Z
Let's say that one point its (1538C, 1000 Z) and other one is (-195.8 C, 0Z)
So then we can calculate the slope for the linear model like this:

And now for the slope we can use one point let's use for example (-195.8C, 0Z), and we have this:

And if we solve for b we got:

So then our lineal model would be:

Part A
The boiling point of water is 100C so we just need to replace in the model and see what we got:

Part B
For this case we have Z =100 and we want to solve for C, so we can do this:


Part C
For this case we know that 
And we can use the result from part B to solve for K like this:

Hello! You can call me Emac or Eric.
I understand your problem, that question is pretty hard. But I found some information that I think you should read. This can get your problem done quickly.
Please hit that thank you button if that helped, I don’t want thank you’s I just want to know that this helped.
Please reply if this doesn’t help, I will try my best to gather more information or a answer.
Here is some good information that could help you out a lot!
Let’s begin by exploring some techniques astronomers use to study how galaxies are born and change over cosmic time. Suppose you wanted to understand how adult humans got to be the way they are. If you were very dedicated and patient, you could actually observe a sample of babies from birth, following them through childhood, adolescence, and into adulthood, and making basic measurements such as their heights, weights, and the proportional sizes of different parts of their bodies to understand how they change over time.
Unfortunately, we have no such possibility for understanding how galaxies grow and change over time: in a human lifetime—or even over the entire history of human civilization—individual galaxies change hardly at all. We need other tools than just patiently observing single galaxies in order to study and understand those long, slow changes.
We do, however, have one remarkable asset in studying galactic evolution. As we have seen, the universe itself is a kind of time machine that permits us to observe remote galaxies as they were long ago. For the closest galaxies, like the Andromeda galaxy, the time the light takes to reach us is on the order of a few hundred thousand to a few million years. Typically not much changes over times that short—individual stars in the galaxy may be born or die, but the overall structure and appearance of the galaxy will remain the same. But we have observed galaxies so far away that we are seeing them as they were when the light left them more than 10 billion years ago.
That is some information, I do have more if you need some! Thanks!
Have a great rest of your day/night! :)
Emacathy,
Brainly Team.