Answer:
Volume required = 0.327 L
Explanation:
Given data:
Volume in L = ?
Molarity of solution = 1.772 M
Mass of BaCl₂ = 123 g
Solution:
First of all we will calculate the number of moles of BaCl₂,
Number of moles = mass/molar mass
Number of moles = 123 g/ 208.23 g/mol
Number of moles = 0.58 mol
Now, given problem will solve by using molarity formula.
Molarity = number of moles / volume in L
1.772 M = 0.58 mol / Volume in L
Volume in L = 0.58 mol / 1.772 M
Volume in L = 0.327 L
Answer: Temperature is an example of a quantitative variable
Explanation:
A quantitative variable is defined as :
- A variable that can assume a numerical value .
- It can be ordered with respect to either magnitude or dimensions.
- It is further classified into two types : interval scale and ratio scale.
Temperature comes under interval scale , because interval scale has no zero point.
For example : A 0° C Celsius does not interpret that there is no temperature.
Therefore , Temperature is an example of a quantitative variable.
Hence, the correct answer is "quantitative variable"
Answer:
The war of the currents, sometimes called battle of the currents, was a series of events surrounding the introduction of competing electric power transmission systems in the late 1880s and early 1890s.
Explanation:
Answer:
0.147 mol
Explanation:
Step 1: Calculate the volumetric concentration (Cv)
We will use the following expression.
Cv = Cg × ρ
Cv = 98.0 g%g × 1.84 g/mL = 180 g%mL
Step 2: Calculate the molarity of sulfuric acid
We will use the following expression.
M = mass solute / molar mass solute × liters of solution
M = 180 g / 98.08 g/mol × 0.100 L = 18.4 M
Step 3: Calculate the moles of solute in 8.00 mL of solution
8.00 × 10⁻³ L × 18.4 mol/L = 0.147 mol