Answer:
10 atm
Explanation:
There's a lot to do here, but lets take it one step at a time. First, let's write a balanced equation for the decomposition of potassium chlorate into potassium chloride and oxgyen gas.
2 KClO3 → 2 KCl + 3 O2
Now let's find the moles of the KClO3 (molar mass 122.55 g/mol) that we have take 10 g/122.55 g/mol, grams will cancel and we are left with 0.0816 moles. lets divide that by two since we have a two in front of the KClO3 in the equation, and then multiply that number by 5 since it's the total moles of products, in summary, multiply by 5/2 to get 0.204 moles.
Now that we know the moles of our products, let's plug some stuff into the ideal gas law PV = nRT. We are looking for P so let's solve for that. P = (nRT)/V, now let's plug in our values. Make sure V is converted to liters so 0.5 L. And convert celcius to kelvin by adding 273
P = ((0.204 moles)(318 K)(0.08206 L atm mol^-1 K^-1))/0.5 L
A lot of units cancel, and we get about 10.65 atm, if you don't want the answer in atm, you can find a conversion equation. But let's round to sig figs for now, which will bring us to 10 atm.
Answer:
We need 7.5 mL of the 1M stock of NaCl
Explanation:
Data given:
Stock = 1M this means 1 mol/ L
A 0.15 M solution of 50 mL has 0.0075 moles NaCl per 50 mL
Step 2: Calculate the volume of stock we need
The moles of solute will be constant
and n = M*V
M1*V1 = M2*V2
⇒ with M1 = the initial molair concentration = 1M
⇒ with V1 = the volume we need of the stock
⇒ with V2 = the volume we want to make of the new solution = 50 mL = 0.05 L
⇒ with M2 = the concentration of the new solution = 0.15 M
1*V1 = 0.15*(50)
V1 = 7.5 mL
Since 0.0075 L of 1M solution contains 0.0075 moles
50 mL solution will contain also 0.0075 moles but will have a molair concentration of 0.0075 moles / 0.05 L =0.15 M
We need 7.5 mL of the 1M stock of NaCl
Answer:
Scheme is Attached.
When 3,5 dimethyl-4- octene is react with ozone two products are obtain.
2-Methyl butanal and 2 pentanon.
The complete reaction is given in attached file.
IT forms because they are highly reactive elements.