Answer:
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Explanation:
Where:
Q = heat absorbed or heat lost
c = specific heat of substance
m = Mass of the substance
ΔT = change in temperature of the substance
We have mass of copper = m = 25.3 g
Specific heat of copper = c = 0.385 J/g°C
ΔT = 39°C - 22°C = 17°C
Heat absorbed by the copper :
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Answer:
The answer is B
Explanation:
The answer is B because representative particles can only be atoms.
Soap is created by mixing fats and oils with a base as opposed to detergent which is created by combining chemical compounds in a mixer.
Answer:
(n, l, m sub l, m sub s)
N: principle quantum number (1,2,3,4,etc)
l: angular momentum quantum number, the shape (l has to be at least 1 less than n, but can be 0 depending on n)
M sub l: magnetic quantum number (l determines this number)
M sub s: spin quantum number (can only ever be 1/2 or -1/2)
Explanation:
Answer:
<em> 14, 508J/K</em>
ΔHrxn =q/n
where q = heat absorbed and n = moles
Explanation:
<em>m = mass of substance (g) = 0.1184g</em>
1 mole of Mg - 24g
<em>n</em> moles - 0.1184g
<em>n = 0.0049 moles.</em>
Also, q = m × c × ΔT
<em> Heat Capacity, C of MgCl2 = 71.09 J/(mol K)</em>
<em>∴ specific heat c of MgCL2 = 71.09/0.0049 (from the formula c = C/n)</em>
<em>= 14, 508 J/K/kg</em>
ΔT= (final - initial) temp = 38.3 - 27.2
= 11.1 °C.
mass of MgCl2 = 95.211 × 0.1184 = 11.27
⇒ q = 11.27g × 11.1 °C × <em>14, 508 j/K/kg </em>
<em>= 1,7117.7472 J °C-1 g-1</em>
<em />
<em>∴ ΔHrxn = q/n</em>
<em>=1,7117.7472 ÷ 0.1184 </em>
<em>= 14, 508J/K</em>