Answer:
boring
Explanation:
life would be meaningless like everyone being like on person
Answer:
7.46 g.
Explanation:
- Firstly, we need to calculate the amount of heat needed to warm 5.64 kg of water from 21.0°C to 70.0°C using the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by water (Q = ??? J).
m is the mass of water <u><em>(m: we will determine).</em></u>
c is the specific heat capacity of water (c = 4.186 J/g.°C).
ΔT is the temperature difference (final T - initial T) (ΔT = 70.0 °C - 21.0 °C = 49.0 °C).
- To determine the mass of 1.76 L of water we can use the relation:
mass = density x volume.
density of water = 1000 g/L & V = 1.76 L.
∴ mass = density x volume = (1000 g/L)(1.76 L) = 1760.0 g.
∵ Q = m.c.ΔT
<em>∴ Q = m.c.ΔT </em>= (1760.0 g)(4.186 J/g.°C)(49.0 °C) = 360483.2 J ≅ 360.4832 kJ.
- As mentioned in the problem the molar heat of combustion of hexane is - 4163.0 kJ/mol.
<em>Using cross multiplication we can get the no. of moles of hexane that are needed to be burned to release 360.4832 kJ:</em>
Combustion of 1.0 mole of methane releases → - 4163.0 kJ.
Combustion of ??? mole of methane releases → - 360.4832 kJ.
∴ The no. of moles of hexane that are needed to be burned to release 360.4832 kJ = (- 360.4832 kJ)(1.0 mol)/(- 4163.0 kJ) = 0.0866 mol.
- Now, we can get the mass of hexane that must be burned to warm 1.76 L of water from 21.0°C to 70.0°C:
<em>∴ mass = (no. of moles needed)(molar mass of hexane)</em> = (0.0866 mol)(86.18 g/mol) = <em>7.46 g.</em>
Answer:
<h2><em><u>(a) indra point</u></em></h2>
Explanation:
Indira point is the southern most point of India and is situated on great nicobar island in the nicobar island.
Answer:
t = 1862 s
Explanation:
To do this, we need first to determine the theorical detention time, which can be determined with the following expression:
t₀ = ∀/Q (1)
Where:
t₀: detention time
∀: Volume of the fluid in the reactor
Q: Flow rate in the reactor
With this time, we must use the following expression to determine the time that the workers will take to vent the tank:
C = C₀ e^(-t/t₀) (2)
From here, we must solve for time t, and the expression will be:
t = ln(C₀/C) * t₀ (3)
Now that we know the expression to use, let's solve for t. Using (1) to determine the detention time, ∀ is 1900 m³, and Q is 2.35 m³/s so:
t₀ = 1900 / 2.35 = 808.51 s
Now, let's solve for the time t. C will be 0.0015 mg/L (or 1.5 mg/m³ cause in 1 m³ we have 1000 L) and C₀ 15 mg/m³:
t = ln(15/1.5) * 808.51
<h2>
t = 1861.66 s or simply 1862 s</h2><h2>
</h2>
Hope this helps
Answer:work function= 8.2×10-19J
Minimum wavelength of light required= 2.4×10-7m
Explanation:
The wavelength of incident light was given as 193nm. We have to convert this to meters and have 193×10-9m. Then we use it to find the energy of incident photon E. When E is found we now apply Einstein photoelectric equation to obtain the work function Wo since the kinetic energy of photoelectrons is known as 1.8×10-19J.
From this work function. We can obtain the minimum wavelength of light required. All these steps are shown in the image attached.