Answer:
See explanation
Explanation:
The boiling point of a substance is affected by the nature of bonding in the molecule as well as the nature of intermolecular forces between molecules of the substance.
2-methylpropane has only pure covalent and nonpolar C-C and C-H bonds. As a result of this, the molecule is nonpolar and the only intermolecular forces present are weak dispersion forces. Therefore, 2-methylpropane has a very low boiling point.
As for 2-iodo-2-methylpropane, there is a polar C-I bond. This now implies that the intermolecular forces present are both dispersion forces and dipole interaction. As a result of the presence of stronger dipole interaction between 2-iodo-2-methylpropane molecules, the compound has a higher boiling point than  2-methylpropane.
 
        
             
        
        
        
Answer:
weak bonds break and strong bonds form
Explanation:
An exothermic reaction is a chemical reaction in which heat energy is evolved during the reaction process.
Bond formation requires energy while bond breakage releases energy. More energy is needed for the formation of weak bonds as compared to strong bonds.
<em>Hence, when weak bonds break, they release more energy than needed to make a corresponding strong bond leading to the release of the remaining energy as heat.</em>
 
        
             
        
        
        
<span>'It is formed when metal atoms lose electrons to nonmetal atoms' is the incorrect statement. This statement is the definition of ionic bonding.
Hope this helps!</span>
        
             
        
        
        
Answer:
Conduct more trials
Explanation:
Theoretical Probability can be defined as what someone is expecting to happen
Experimental Probability on the other hand, is defined as what actually happens.
Probability is usually calculated in the same way for experimental probability and that of theoretical probability. You divide the total number of possible ways in which a particular outcome can happen, by the total number of outcomes itself.
In Experimental probability, the more times a probability is tried, it gets closer and even more closer to theoretical probability.
So, for the question, Jamie should improve the number of tries more, so as to get his experimental probability results to be closer to the theoretical probability result.
 
        
             
        
        
        
Answer:
the amount of air resistance depends upon the speed of the object, more massive objects fall faster than less massive objects because they are acted upon by a larger force of gravity; for this reason, they accelerate to higher speeds until the air resistance force equals the gravity force.