Because the polar regions receive low-angle insolation.
Insolation is the amount of solar radiation received by a given area. The Sun is always low on the horizon. The low Sun angle makes the beam of solar radiation to travel a longer distance from upper troposphere to reach earth's surface as compared to when it is directly overhead. In this case, the radiations are scattered and reflected more by the atmosphere and spread over a larger area. Thus, the intensity of solar radiation is very less at polar regions than near the equatorial region. This is the reason of very cold climates at polar regions.
Answer:
a.If we increase the wind velocity, the maximum vertical dispersal height will decrease, while the rate of diffusion will increase
b.If we increase the humidity, the maximum vertical dispersal height will increase after 24 hours.
c.If we increase the lapse rate, the maximum vertical dispersal height of the pollutants will increase
Explanation:
a.If we increase the wind velocity, the maximum vertical dispersal height will decrease, while the rate of diffusion will increase
b.If we increase the humidity, the maximum vertical dispersal height will increase after 24 hours.
c.If we increase the lapse rate, the maximum vertical dispersal height of the pollutants will increase
Answer:
Explanation:
Newton's 2 nd law of motion tells that when equal torque is applied on object having higher moment of inertia , it will rotate slower .
Moment of inertia of boiled egg is higher because the whole egg rotates as s solid unit . Hence it will rotate slower or it rolls slower on an inclined surface .
In this way by applying Newton's law , we can identify raw or boiled egg .
Answer:
magnitude of the induced emf in the coil is 0.0153 V
Explanation:
Given data
no of turns = 20
area = 0.0015 m²
magnitude B1 = 4.91 T/s
magnitude B2 = 5.42 T/s
to find out
the magnitude of the induced emf in the coil
solution
we know here
emf = -n A d∅ /dt
so here n = 20 and
A = 0.0015
and d∅ = B2 - B1 = 5.42 - 4.91
d∅ = 0.51 T and dt at 1 sec
so put all value
emf = -n A d∅ /dt
emf = -20 (0.0015) 0.51 / 1
emf = - 0.0153
so magnitude of the induced emf in the coil is 0.0153 V