By using third law of equation of motion, the final velocity V of the rubber puck is 8.5 m/s
Given that a hockey player hits a rubber puck from one side of the rink to the other. The parameters given are:
mass m = 0.170 kg
initial speed u = 6 m/s.
Distance covered s = 61 m
To calculate how fast the puck is moving when it hits the far wall means we are to calculate final speed V
To do this, let us first calculate the kinetic energy at which the ball move.
K.E = 1/2m
K.E = 1/2 x 0.17 x 
K.E = 3.06 J
The work done on the ball is equal to the kinetic energy. That is,
W = K.E
But work done = Force x distance
F x S = K.E
F x 61 = 3.06
F = 3.06/61
F = 0.05 N
From here, we can calculate the acceleration of the ball from Newton second law
F = ma
0.05 = 0.17a
a = 0.05/0.17
a = 0.3 m/
To calculate the final velocity, let us use third equation of motion.
=
+ 2as
=
+ 2 x 0.3 x 61
= 36 + 36
= 72
V = 
V = 8.485 m/s
Therefore, the puck is moving at the rate of 8.5 m/s (approximately) when it hits the far wall.
Learn more about dynamics here: brainly.com/question/402617
<span><span>Velocity is a vector, and the initial and final ones are in opposite directions.
There must have been acceleration in order to change the direction of motion.</span>
A) No. The initial and final velocities are the same.
This is all wrong, and not the correct choice.
It's "Yes", and the initial and final velocities are NOT the same.
B) Yes. The ball had to slow down in order to change direction.
This is poor, and not the correct choice.
The "Yes" is correct, but the explanation is bad.
Acceleration does NOT require any change in speed.
C) No. Acceleration is the change in velocity. The ball's velocity is constant.
This is all wrong, and not the correct choice.
It's "Yes", there IS acceleration, and the ball's velocity is NOT constant.
D) Yes. Even though the initial and final velocities are the same, there is a change in direction for the ball.
This choice is misleading too.
The "Yes" is correct ... there IS acceleration.
The change in direction is the reason.
The initial and final velocities are NOT the same. Only the speeds are.
</span>
Answer:
![125\sqrt[4]{8}](https://tex.z-dn.net/?f=125%5Csqrt%5B4%5D%7B8%7D)
Explanation:
A number of the form

can be re-written in the radical form as follows:
![\sqrt[n]{a^m}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5Em%7D)
In this problem, we have:
a = 1,250
m = 3
n = 4
So, if we apply the formula, we get
![1,250^{\frac{3}{4}}=\sqrt[4]{(1,250)^3}](https://tex.z-dn.net/?f=1%2C250%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%3D%5Csqrt%5B4%5D%7B%281%2C250%29%5E3%7D)
Then, we can rewrite 1250 as

So we can rewrite the expression as
![=\sqrt[4]{(2\cdot 5^4)^3}=5^3 \sqrt[4]{2^3}=125\sqrt[4]{8}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B4%5D%7B%282%5Ccdot%205%5E4%29%5E3%7D%3D5%5E3%20%5Csqrt%5B4%5D%7B2%5E3%7D%3D125%5Csqrt%5B4%5D%7B8%7D)
Thank you for posting your question here at brainly. I would say yes to the above question. <span>Work done is the force applied multiplied by the distance travelled. </span><span>Wd = F x d. </span><span>So if d increases, Wd increases also. I hope the answer will help you. </span>