Answer:
D. The tea loses heat to the spoon causing the spoon to become warmer
Explanation:
When the silver spoon at a lower temperature than the tea, is added to the tea, it makes thermal contact. Hence, the heat transfer starts between the two until the equilibrium is reached. We know that the heat transfer takes place from the body with a higher temperature to a body with a lower temperature. As a result, the body with higher temperature loses heat and its temperature lowers down. While the body with a lower temperature gains heat and its temperature rises.
Therefore, the correct option is:
<u>D. The tea loses heat to the spoon causing the spoon to become warmer</u>
The study 'characterizing vibration-assisted atomic force based nanomachining' aims to elucidate nanomachine properties for heterogeneous materials.
<h3>What is nanomachining?</h3>
The expression nanomachining makes reference to the study of nanometric machines (nanomachines) and related materials, which can be achieved by different approaches including sensor-based strategies related to acoustic auditive phenomena.
In conclusion, the study 'characterizing vibration-assisted atomic force based nanomachining' aims to elucidate nanomachine properties for heterogeneous materials.
Learn more about nanomachines here:
brainly.com/question/20875598
#SPJ1
You're talking about a grain of sand or a stone or a rock that's drifting in space, and then the Earth happens to get in the way, so the stone falls down to Earth, and it makes a bright streak of light while it's falling through the atmosphere and burning up from the friction.
-- While it's drifting in space, it's a <em>meteoroid</em>.
-- While it's falling through the atmosphere burning up and making a bright streak of light, it's a <em>meteor</em>.
-- If it doesn't completely burn up and there's some of it left to fall on the ground, then the leftover piece on the ground is a <em>meteorite</em>.
Answer:

Explanation:
Velocity can be found using the following formula:

where p is the momentum and m is the mass.
The woman has a mass of 55 kilograms and a momentum of 200 kilogram meters per second.

Substitute the values into the formula.

Divide. Note that the kilograms, or kg, will cancel each other out.


The woman's velocity is 3.63636364 meters per second.
Answer:
t = 3.48 s
Explanation:
The time for the maximum height can be calculated by taking the derivative of height function with respect to time and making it equal to zero:

where,
v₀ = initial speed = 110 ft/s
Therefore,

<u>t = 3.48 s</u>