1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lys-0071 [83]
3 years ago
14

Solve the equation below and find the variation constant, k .Find y when x = 7 and z=5, if y varies jointly as x and 2, and y= 1

4 and x = 4 when z= 3​
Mathematics
1 answer:
Vlada [557]3 years ago
4 0
<h3>Answers:</h3>

Variation Constant: k = 7/6

y = 245/6 when x = 7 and z = 5

====================================

Explanation:

"y varies jointly as x and z" means that y = kxz

We have (x,y,z) = (4,14,3) as one triple, so,

y = kxz

14 = k*4*3

14 = 12k

12k = 14

k = 14/12

k = 7/6 is the variation constant

The equation goes from y = kxz to y = (7/6)xz

----------------

Plug in x = 7 and z = 5 to find y

y = (7/6)xz

y = (7/6)*7*5

y = (7/6)*(7/1)*(5/1)

y = (7*7*5)/(6*1*1)

y = 245/6

You might be interested in
Could somebody please answer these four questions with simple yet explanatory answers?
Kamila [148]
1) Surface Area = 2(lw + lh + wh)
2(4*5+4*9+5*9) =202in^2
Surface Area=202in^2
Lateral Area= Perimeter of base * height
5+5=10  <--width+width
4+4=8 <---length + length 
10+8=18  <--total perimeter
18 * 9=162in^2  <--multiplied the height +perimeter of base  
Lateral Area=162in^2

2) Same concept as the previous one
 Surface Area = 2(lw + lh + wh)
2(4*2+4*5+5*2) =76in^2
Surface Area= 76in^2

Lateral Area
Lateral Area= Perimeter of base * height
4+4=8
2+2=4
8+4=12
12 x 5=60
Lateral Area= 60in^2  
7 0
4 years ago
Read 2 more answers
Square the binomial below:<br> (x– 4)
likoan [24]

Answer:

x^2-8x+16

Step-by-step explanation:

(x-4)^2

x^2-4x-4x+16

x^2-8x+16

3 0
3 years ago
During the 7th examination of the Offspring cohort in the Framingham Heart Study, there were 1219 participants being treated for
AlexFokin [52]

Answer:

95% confidence interval for the proportion of the population which are on treatment is [0.3293 , 0.3607].

Step-by-step explanation:

We are given that during the 7th examination of the Offspring cohort in the Framing ham Heart Study, there were 1219 participants being treated for hypertension and 2,313 who were not on treatment.

The sample proportion is :  \hat p = x/n = 1219/3532 = 0.345

Firstly, the pivotal quantity for 95% confidence interval for the proportion of the population is given by;

      P.Q. = \frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }  ~ N(0,1)

where, \hat p = sample proportion = 0.345

           n = sample of participants = 3532

           p = population proportion

<em>Here for constructing 95% confidence interval we have used One-sample z proportion statistics.</em>

So, 95% confidence interval for the population​ proportion, p is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level of

                                                         significance are -1.96 & 1.96}

P(-1.96 < \frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } } < 1.96) = 0.95

P( -1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } < {\hat p-p} < 1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } ) = 0.95

P( \hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } < p < \hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } ) = 0.95

<u>95% confidence interval for p</u>= [\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } , \hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }]

    = [ 0.345-1.96 \times {\sqrt{\frac{0.345(1-0.345)}{3532} } } , 0.345+1.96 \times {\sqrt{\frac{0.345(1-0.345)}{3532} } } ]

    = [0.3293 , 0.3607]

Hence, 95% confidence interval for the proportion of the population which are on treatment is [0.3293 , 0.3607].

6 0
3 years ago
Answer the question below
konstantin123 [22]

Answer:

Hola Amigos De Brainly les quiero pedir de su ayuda para resolver esta actividad El tema es ecuaciones cuadráticas y necesito que me ayuden POR FAVOR.

6 0
3 years ago
Read 2 more answers
Integrate Sec (4x - 1) Tan (4x - 1) Dx ​
Delicious77 [7]

\bf \displaystyle\int~sec(4x-1)tan(4x-1)dx \\\\[-0.35em] ~\dotfill\\\\ sec(4x-1)tan(4x-1)\implies \cfrac{1}{cos(4x-1)}\cdot \cfrac{sin(4x-1)}{cos(4x-1)}\implies \cfrac{sin(4x-1)}{cos^2(4x-1)} \\\\[-0.35em] ~\dotfill\\\\ \displaystyle\int~\cfrac{sin(4x-1)}{cos^2(4x-1)}dx \\\\[-0.35em] ~\dotfill\\\\ u=cos(4x-1)\implies \cfrac{du}{dx}=-sin(4x-1)\cdot 4\implies \cfrac{du}{-4sin(4x-1)}=dx \\\\[-0.35em] ~\dotfill

\bf \displaystyle\int~\cfrac{~~\begin{matrix} sin(4x-1) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }{u^2}\cdot \cfrac{du}{-4~~\begin{matrix} sin(4x-1) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\implies -\cfrac{1}{4}\int\cfrac{1}{u^2}du\implies -\cfrac{1}{4}\int u^{-2}du \\\\\\ -\cfrac{1}{4}\cdot \cfrac{u^{-2+1}}{-1}\implies \cfrac{1}{4}\cdot u^{-1}\implies \cfrac{1}{4u}\implies \cfrac{1}{4cos(4x+1)}+C

5 0
4 years ago
Other questions:
  • 1. Find the area of the triangle:<br> 17<br> 16
    6·1 answer
  • Help with maths please
    10·2 answers
  • If a seamstress is paid $7.85 per hour and works 18.75 hours in one week, solve for the amount of pay she gets for that week. A.
    12·1 answer
  • Let f(x)=4x^2+5.<br> The g(x) is f(x) translated up 4 units.<br><br> What is the equation of g(x)
    5·1 answer
  • 1.) 45r^3-15r^2<br><br> *Factoring*<br><br> 2.) 9x^2-3x<br><br><br><br> 3.) X^2+3x
    11·1 answer
  • What type of triangle?
    12·1 answer
  • If 2(4x + 3)/(x - 3)(x + 7) = a/x - 3 + b/x + 7, find the values of a and b.
    14·2 answers
  • What is the inverse of the function f(x) = 2x - 10?
    15·2 answers
  • Use the Substitution method to solve the system of equations<br><br> 3x+4y=10<br><br> y=x-1
    5·1 answer
  • Some one help me please!
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!