The exact value of cos120 if the measure 120 degrees intersects the unit circle at point (-1/2,√3/2) is 0.5
<h3>Solving trigonometry identity</h3>
If an angle of measure 120 degrees intersects the unit circle at point (-1/2,√3/2), the measure of cos(120) can be expressed as;
Cos120 = cos(90 + 30)
Using the cosine rule of addition
cos(90 + 30) = cos90cos30 - sin90sin30
cos(90 + 30) = 0(√3/2) - 1(0.5)
cos(90 + 30) = 0 - 0.5
cos(90 + 30) = 0.5
Hence the exact value of cos120 if the measure 120 degrees intersects the unit circle at point (-1/2,√3/2) is 0.5
Learn more on unit circle here: brainly.com/question/23989157
#SPJ1
Answer:
Determine if the sequence is arithmetic (Do you add, or subtract, the same amount from one term to the next?)
Find the common difference.
Step-by-step explanation:
Answer:
B) 25
Step-by-step explanation:
First, you add up all the numbers. Then, you divide it by 9 which is the total amount of numbers there are.
Answer: The answer is Yes.
Step-by-step explanation: Given in the question that Radric was asked to define "parallel lines" and he said that parallel lines are lines in a plane that do not have any points in common. We are to decide whether Radric's definition is valid or not.
Parallel lines are defined as lines in a plane which never meets or any two lines in a plane which do not intersect each other at any point are called parallel.
Thus, Radric's definition is valid.
Answer:
Approximately : 135
Step-by-step explanation:
60sec x 3 = 180sec
45 x 3 = 135