Answer:
Explanation:
Given the following :
Speed (V) = speed of 2.30×10^7 m/s
Acceleration (a) = 1.70×10^13 m/s^2
Using the right hand rule provided by Lorentz law:
B = F / qvSinΘ
Where B = magnitude of the magnetic field
v = speed of the particle
Θ = 90° (perpendicular to the field)
q = charge of the particle
SinΘ = sin90° = 1
Note F = ma
Therefore,
B = ma / qvSinΘ
Mass of proton = 1.67 × 10^-27
Charge = 1.6 × 10^-19 C
B = [(1.67 × 10^-27) × (1.70 × 10^13)] / (1.6 × 10^-19) × (2.30 × 10^7) × 1
B = 2.839 × 10^-14 / 3.68 × 10^-12
B = 0.7715 × 10^-2
B = 7.72 × 10^-3 T
2) Magnetic field will be in the negative y direction according to the right hand thumb rule.
Since Velocity is in the positive z- direction, acceleration in the positive x - direction, then magnetic field must be in the negative y-direction.
I think the correct answer is is D.
Answer:
λ = a
Explanation:
This is a diffraction exercise that is described by the expression
a sin θ = m λ
sin θ = m λ/ a
the first zero of the diffraction occurs for m = 1
sin θ = λ / a
angles are generally very small and are measured in radians
sin θ = θ = y / x
we substitute
the width of the central maximum is twice the distance to zero
w = 2y
in the exercise indicate that this width is equal to twice the distance to the screen (2x)
W = 2x
2y = 2x
we substitute
1 = λ/ a
λ = a
we see that the width of the slit is equal to the wavelength used.
Answer:
The wavelengths of C1 is 10.4m, A6 is 0.193m and B7 is 0.0861m
Explanation:
Using the formula V = f×λ . Then substitute the following values into the formula:
a) v=340m/s
f=32.7 Hz
λ=V ÷ f
= 340 ÷ 32.7
= 10.4m (3s.f)
b) λ=340 ÷ 1760
= 0.193m (3s.f)
c) λ=340÷3951.1
= 0.0861m (3s.f)
(Correct me if I am wrong)