Answer:
chemical potential of a species is energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition.
Explanation:
Answer:
1.33×10⁻¹⁰ N
Explanation:
F = GMm / r²
where G is the gravitational constant,
M and m are the masses of the objects,
and r is the distance between them.
F = (6.67×10⁻¹¹ N/m²/kg²) (1000 kg) (2000 kg) / (1000 m)²
F = 1.33×10⁻¹⁰ N
Answer:
4m/s
Explanation:
due to newtons second law of motion
the accelerations that result when a 12-N net force is applied to a 3-kg object. A 3-kg object experiences an acceleration of 4 m/s/s.
HOPE THIS HELPS PLEASE MARK AS BRAINLIEST:)
Naturally we assume that 10000 km/hr is initial velocity (same as being shot from a cannon), and no air resistance. With so high a velocity, the effect of diminishing gravity with increasing radius must be taken into account, so you use an energy solution. M is earth mass, r is earth radius.
KE/m = (9000000/3600)^2/2 = 3858025 J/kg
ΔPE/m = (PE(at height) - PE(at surface))/m = -GM/(r+h) + GM/r
KE/m = ΔPE/m
KE/m - GM/r = -GM/(r+h)
h = -GM / (KE/m - GM/r) - r = 335665.44 m
(Using G = 6.673E-11 Nm^2/kg^2, M = 5.9742E24 kg, r = 6378100 m)
Answer:
0.0334N
Explanation:
Given parameters:
M1 = 5 x 10⁶kg
M2 = 1 x 10⁶kg
Distance = 100m
Unknown:
Gravitational force = ?
Solution:
To solve this problem, we use the Newton's law of universal gravitation.
Fg =
G is the universal gravitation constant
m is the mass
r is the distance
Fg =
= 0.0334N