Answer:
The displacement was 320 meters.
Explanation:
Assuming projectile motion and zero initial speed (i.e., the object was dropped, not thrown down), you can calculate the displacement using the kinematic equation:

The displacement was 320 meters.
Answer:
The acceleration of the object decreases I think
Explanation:
Answer:
The intensity at 10° from the center is 3.06 × 10⁻⁴I₀
Explanation:
The intensity of light I = I₀(sinα/α)² where α = πasinθ/λ
I₀ = maximum intensity of light
a = slit width = 2.0 μm = 2.0 × 10⁻⁶ m
θ = angle at intensity point = 10°
λ = wavelength of light = 650 nm = 650 × 10⁻⁹ m
α = πasinθ/λ
= π(2.0 × 10⁻⁶ m)sin10°/650 × 10⁻⁹ m
= 1.0911/650 × 10³
= 0.001679 × 10³
= 1.679
Now, the intensity I is
I = I₀(sinα/α)²
= I₀(sin1.679/1.679)²
= I₀(0.0293/1.679)²
= 0.0175²I₀
= 0.0003063I₀
= 3.06 × 10⁻⁴I₀
So, the intensity at 10° from the center is 3.06 × 10⁻⁴I₀
Answer:
If a crest formed by one wave interferes with a trough formed by the other wave then the rope will not move at all.
Explanation:
Assume a straight rope tied to both ends is at rest. When a wave is created at one end of the rope, it travels to the other end of the rope through formation of alternative crest and trough. Due to these crest and trough the rope shifts up and down.
But when there are two waves travelling through the rope and both have opposite direction (directed towards one another) in such a way that crest formed by one wave is interfering with the trough formed by the other wave then due to this interference the waves will cancel the effects of each other on the rope and rope will be stable.
Answer:
1 * 10^-7 [J]
Explanation:
To solve this problem we must use dimensional analysis.
1 ergos [erg] is equal to 1 * 10^-7 Joules [J]
![1[erg]*\frac{1*10^{-7} }{1}*[\frac{J}{erg} ] \\= 1*10^{-7}[J]](https://tex.z-dn.net/?f=1%5Berg%5D%2A%5Cfrac%7B1%2A10%5E%7B-7%7D%20%7D%7B1%7D%2A%5B%5Cfrac%7BJ%7D%7Berg%7D%20%5D%20%5C%5C%3D%201%2A10%5E%7B-7%7D%5BJ%5D)