Using lens equation;
1/o + 1/i = 1/f; where o = Object distance, i = image distance (normally negative), f = focal length (normally negative)
Substituting;
1/o + 1/-30 = 1/-43 => 1/o = -1/43 + 1/30 = 0.01 => o = 1/0.01 = 99.23 cm
Therefore, the object should be place 99.23 cm from the lens.
Explanation:
a) Power = work / time = force × distance / time
P = Fd/t
P = (85 kg × 9.8 m/s²) (4.6 m) / (12 s)
P ≈ 319 W
b) P = Fd/t
0.70 (319 W) = (m × 9.8 m/s²) (4.6 m) / (9.6 s)
m = 47.6 kg
0.29 m/s (wave velocity = wavelength (lamda)/period (T) in metres)
35 / 1.2 = 29.16
29.16 ÷ 100 = 0.29
Wave velocity in string:
The properties of the medium affect the wave's velocity in a string. For instance, if a thin guitar string is vibrated while a thick rope is not, the guitar string's waves will move more quickly. As a result, the linear densities of the two strings affect the string's velocity. Linear density is defined as the mass per unit length.
Instead of the sinusoidal wave, a single symmetrical pulse is taken into consideration in order to comprehend how the linear mass density and tension will affect the wave's speed on the string.
Learn more about density here:
brainly.com/question/15164682
#SPJ4
Answer:
250N
Explanation:
Given parameters:
Time = 4s
Momentum = 1000kgm/s
Unknown:
Force = ?
Solution:
To solve this problem, we use Newton's second law of motion;
Ft = Momentum
F is the force
t is the time
So;
F x 4 = 1000kgm/s
F = 250N