Answer:
Part(a): The value of the spring constant is
.
Part(b): The work done by the variable force that stretches the collagen is
.
Explanation:
Part(a):
If '
' be the force constant and if due the application of a force '
' on the collagen '
' be it's increase in length, then from Hook's law

Also, Young's modulus of a material is given by

where '
' is the area of the material and '
' is the length.
Comparing equation (
) and (
) we can write

Here, we have to consider only the circular surface of the collagen as force is applied only perpendicular to this surface.
Substituting the given values in equation (
), we have

Part(b):
We know the amount of work done (
) on the collagen is stored as a potential energy (
) within it. Now, the amount of work done by the variable force that stretches the collagen can be written as

Substituting all the values, we can write

Shield volcanos have the most predictable eruptions.
In the left-hand rule, the field is represented by the forefinger and it is perpendicular to the motion.
<h3>Fleming’s Left-Hand Rule:</h3>
A force perpendicular to the field's direction and the direction of the current flow is experienced by a current-carrying conductor when it is exposed to an external magnetic field. According to Fleming's Left Hand Rule, if the thumb, forefinger, and middle finger are arranged in a straight line on the left hand, the thumb will point in the direction of the force experienced by the conductor, and the forefinger will point in the direction of the magnetic field, and the middle finger will point in the direction of the electric current. This rule is employed to determine the magnetic force's direction within an electric motor.
Fleming’s Left-Hand Rule are essential rules applicable in magnetism and electromagnetism. They were created by John Ambrose Fleming in the late 19th century as an easy method of determining the direction of motion in an electric motor.
Learn more about Fleming’s Left-Hand here:
brainly.com/question/956563
#SPJ1
Answer:
240 cm³
Explanation:
Weight = Buoyancy
mg = ρVg
m = ρV
(0.9 g/cm³ × 2400 cm³) = (1 g/cm³) V
V = 2160 cm³
The submerged volume is 2160 cm³, so the volume above the surface is 240 cm³.