Answer:
a2 = 2.5 m/s2
Explanation:
F1 = m1 a1 We use the same force so F1 = F2
= 5kg × 15m/s2 F2 = m2 a2
= 75N a2 is required
a2 = F2 / m2
= 75N / 30 kg
= 2.5 m/s2
Answer:
0.0034 sec
Explanation:
L = initial length
T = initial time period = 2.51 s
Time period is given as


L = 1.56392 m
L' = new length
ΔT = Rise in temperature = 142 °C
α = coefficient of linear expansion = 19 x 10⁻⁶ °C
New length due to rise of temperature is given as
L' = L + LαΔT
L' = 1.56392 + (1.56392) (19 x 10⁻⁶) (142)
L' = 1.56814 m
T' = New time period
New time period is given as


T' = 2.5134 sec
Change in time period is given as
ΔT = T' - T
ΔT = 2.5134 - 2.51
ΔT = 0.0034 sec
So, the angular frequency of the blades approximately <u>36.43π rad/s</u>.
<h3>Introduction</h3>
Hi ! Here I will discuss about the angular frequency or what is also often called the angular velocity because it has the same unit dimensions. <u>Angular frequency occurs, when an object vibrates (either moving harmoniously / oscillating or moving in a circle)</u>. Angular frequency can be roughly interpreted as the magnitude of the change in angle (in units of rad) per unit time. So, based on this understanding, the angular frequency can be calculated using the equation :

With the following condition :
= angular frequency (rad/s)
= change of angle value (rad)- t = interval of the time (s)
<h3>Problem Solving</h3>
We know that :
= change of angle value = 1,000 revolution = 1,000 × 2π rad = 2,000π rad/s >> Remember 1 rev = 2π rad/s.- t = interval of the time = 54.9 s.
What was asked :
= angular frequency = ... rad/s
Step by step :



<h3>Conclusion :</h3>
So, the angular frequency of the blades approximately 36.43π rad/s.
Looks like you simply substitute the length of the femur
Shear stress created the San Andreas Fault in Southern California. It is an example of a <span>reverse fault.</span>