Answer:
The shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm
Explanation:
Given;
wavelength of ultraviolet light, λ = 270 nm
work function of the metal, φ = 2.3 eV = 2.3 x 1.602 x 10⁻¹⁹ J = 3.685 x 10⁻¹⁹ J
The energy of the ultraviolet light is given by;

The energy of the incident light is related to kinetic energy of the electron and work function of the metal by the following equation;
E = φ + K.E
K.E = E - φ
K.E = (7.362 x 10⁻¹⁹ J) - (3.685 x 10⁻¹⁹ J )
K.E = 3.677 x 10⁻¹⁹ J
K.E = ¹/₂mv²
mv² = 2K.E
velocity of the electron is given by;

the shortest de Broglie wavelength for the electrons is given by;

Therefore, the shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm
It could be A :) not sure tho
Answer:
1.) 4m
2.) 37 m
3.) 62m
4.) 2.5 s
Explanation:
1.) Given that the
Thinking distance = 1m
Breaking distance = 3m
Stopping distance = breaking distance + thinking distance
Stopping distance = 1 + 3 = 4m
2.) Given that the
Stopping distance = 52 m
Thinking distance = 15m
Breaking distance = 52 - 15 = 37m
3.) The stopping distance = 76m
Thinking distance = 14m
Breaking distance = 76 - 14 = 62m
It take the brakes 62m to slow the car down to a stop.
4.) Given that a lorry travels 28m when stopping from a speed of 4m/s. If its braking distance was 18m, what was the driver’s reaction time?
Thinking = stopping distance - braking distance
Thinking distance = 28 - 18 = 10m
Speed = distance/time
4 = 10/reaction time
Reaction time = 10/4
Reaction time = 2.5 s
5.) Question incomplete
Answer:
blocks of ice are usually covered with cloth or sawdust while being stored