<span>Px = 0
Py = 2mV
second, Px = mVcosφ
Py = –mVsinφ
add the components
Rx = mVcosφ
Ry = 2mV – mVsinφ
Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²)
and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
simplifying
Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²)
Vf = (V/3)âš((cosφ)² + (2 – sinφ)²)
Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ))
Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ))
using the identity sin²(Ď)+cos²(Ď) = 1
Vf = (V/3)âš1 + 4 – 2sinφ)
Vf = (V/3)âš(5 – 2sinφ)</span>
Answer:

Explanation:
given,
magnetic field strength = 1.40 ✕ 10⁻³ T
frequency of oscillation = 60 Hz
diameter of RBC = 7.5 μm
EMF = ?





maximum emf that can generate around the perimeter of the cell 
Answer:
44.4°
Explanation:
Use SOH-CAH-TOA.
Sine = Opposite / Hypotenuse
Cosine = Adjacent / Hypotenuse
Tangent = Opposite / Adjacent
You're given an unknown angle, the adjacent side to that angle, and the hypotenuse. So use cosine.
Cosine = Adjacent / Hypotenuse
cos A = 10 / 14
A = cos⁻¹(5/7)
A ≈ 44.4°
The sun. The more mass an object has, the greater gravitational pull it will have, as mass attracts other mass.