When considering similar triangles, we need congruent angles and proportional sides.
Hence
"Angles B and B' are congruent, and angles C and C' are congruent." is sufficient to prove similarity of two triangles.
"Segments AC and A'C' are congruent, and segments BC and B'C' are congruent." does not prove anything because we know nothing about the angles.
"Angle C=C', angle B=B', and segments BC and B'C' are congruent." would prove ABC is congruent to A'B'C' if and only if AB is congruent to A'B' (not just proportional).
"<span>Segment BC=B'C', segment AC=A'C', and angles B and B' are congruent</span>" is not sufficient to prove similarity nor congruence because SSA is not generally sufficient.
To conclude, the first option is sufficient to prove similarity (AAA)
The answer is J because when you add all the scores you get 76.
Here’s the correct answer and how I got the answer :)
Answer:
P(L ≤ l) =P (1-l ≤ U ≤ l)= l- ( 1 - l ) = 2 l - 1
Step-by-step explanation:
let assume that stick has length 1.Random variable L that make length of a longer piece and random variable U that mark point .See that L < l means that
U≤ l and 1-U ≤l
P(L ≤ l) =P (1-l ≤ U ≤ l)= l- ( 1 - l ) = 2 l - 1
this means 1-l≤U≤l
so we have
if we have L [1/2,1]
then apply the formula we have E(L)=3/4