Answer: an increase in the concentration of
in aqueous solutions and is capable of donating one or more 
Explanation:
According to Arrhenius concept, a base is defined as a substance which donates hydroxide ions
when dissolved in water and an acid is defined as a substance which donates hydrogen ions
in water.
According to the Bronsted Lowry conjugate acid-base theory, an acid is defined as a substance which donates protons and a base is defined as a substance which accepts protons.
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.
Thus According to the Arrhenius concept, an acid is a substance that causes an increase in the concentration of
in aqueous solutions and is capable of donating one or more 
Answer:
A and D are true , while B and F statements are false.
Explanation:
A) True. Since the standard gibbs free energy is
ΔG = ΔG⁰ + RT*ln Q
where Q= [P1]ᵃ.../([R1]ᵇ...) , representing the ratio of the product of concentration of chemical reaction products P and the product of concentration of chemical reaction reactants R
when the system reaches equilibrium ΔG=0 and Q=Keq
0 = ΔG⁰ + RT*ln Q → ΔG⁰ = (-RT*ln Keq)
therefore the first equation also can be expressed as
ΔG = RT*ln (Q/Keq)
thus the standard gibbs free energy can be determined using Keq
B) False. ΔG⁰ represents the change of free energy under standard conditions . Nevertheless , it will give us a clue about the ΔG around the standard conditions .For example if ΔG⁰>>0 then is likely that ΔG>0 ( from the first equation) if the temperature or concentration changes are not very distant from the standard conditions
C) False. From the equation presented
ΔG⁰ = (-RT*ln Keq)
ΔG⁰>0 if Keq<1 and ΔG⁰<0 if Keq>1
for example, for a reversible reaction ΔG⁰ will be <0 for forward or reverse reaction and the ΔG⁰ will be >0 for the other one ( reverse or forward reaction)
D) True. Standard conditions refer to
T= 298 K
pH= 7
P= 1 atm
C= 1 M for all reactants
Water = 55.6 M
Answer:
V₂ =31.8 mL
Explanation:
Given data:
Initial volume of gas = 45 mL
Initial temperature = 135°C (135+273 =408 K)
Final temperature = 15°C (15+273 =288 K)
Final volume of gas = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 45 mL × 288 K / 408 k
V₂ = 12960 mL.K / 408 K
V₂ =31.8 mL
Means moving from one place to the other
Answer:
c is not a true statement