Answer:

Explanation:
From the exercise we know the final x distance, the angle which the projectile is being released and acceleration of gravity

From the equation of x-position we know that

Solving for 
(1)
Now, if we analyze the equation of y-position we got

At the end of the motion y=0

Knowing the equation for
in (1)


Solving for t
Now, we can solve (1)

From the information given in the drawing, it's not possible
to tell whether the displacements are equal, because we
don't know what the vectors represent.
If the vectors are distances, then the displacements are not
equal, because the distance between the start and end points
are not equal.
If the vectors are speeds, then they don't tell us anything about
the distance between the start and end points, so we can't calculate
the displacements.
A state in which an atom has more energy than it does at its ground state.
Hopes this helps!
Answer:
Explanation:
We define the linear density of charge as:

Where L is the rod's length, in this case the semicircle's length L = πr
The potential created at the center by an differential element of charge is:

where k is the coulomb's constant
r is the distance from dq to center of the circle
Thus.

Potential at the center of the semicircle
The optimum wavelength is 450 nm because that is the wavelength of maximum absorbance by FeSCN2+(aq)
you should choose a wavelength with maximum absorbance. In this case, you are using the scattered light, not the absorbed light as your signal. So you should avoid wavelengths where there are absorption peaks.
<h3>What is wavelength ?</h3>
A waveform signal that is carried in space or down a wire has a wavelength, which is the separation between two identical places (adjacent crests) in the consecutive cycles. This length is typically defined in wireless systems in metres (m), centimetres (cm), or millimetres (mm) (mm).
- The distance between two waves' crests serves as an illustration of wavelength. When you and another person have the same overall mindset and can easily communicate, that is an example of being on the same wavelength.
Learn more about Wavelength here:
brainly.com/question/10750459
#SPJ4